- 1. For each of the functions below, state whether or not it has an inverse function. (Hint: Apply the horizontal line test).
- (a) $\{(1,1), (2,2), (3,3)\}$

(b) $\{(1,2), (2,3), (1,4)\}$

(c) $\{ \{3, 2\}, (4, 3), (5, 3) \}$

(h) $y = 2x^2$

(i) $x = y^2$

(j) y = 2

(k) x = 1

2.	Find the	inverse	function	of	each	of the	following	functions:
<i>-</i>	7 111/7 111/4	111 / 0100	1011011011	~ .	02011	~ ~ ~ ~ ~	~~~~	~ ~~~~ · · · · · · · · · · · · · · · ·

(a)	ν	=	x	+	1

(b)
$$y = 3x - 2$$

(c)
$$y = \frac{x+2}{3}$$

(d)
$$y = x^3$$

(e)
$$y = (x+1)^3$$

(f)
$$y = \frac{1}{x-1}$$

(g)
$$y = \frac{x}{x-1}$$

- 3. The function y = x is invariant under inversion. That is, the equation of the function and its inverse are the same.
 - (i) Give examples of 2 more functions which are invariant under inversion.

(ii) What do you notice about the graphs of such functions?

- (b) On the same axes, sketch the graph of its inverse function.
- (c) Find the equation of the inverse function.

(d) Find the coordinates of the point of intersection of the function and its inverse.

ANSWERS:

1. (a) Yes

Not Function Not Function No

(d) Yes

(e) No (i) Not Function (f)

Not Function (g) Not Function (h) No

2. (a) y = x - 1

(d) $y = \sqrt[3]{x}$

(e)
$$y = \sqrt[3]{x} - 1$$

$$(f) \quad y = 1 + \frac{1}{x}$$

(g)
$$y = \frac{x}{x-1}$$

3. (i)
$$y = -x$$
 (or more generally, $y = c - x$, where c is any constant); $y = \frac{1}{x}$ (or $y = \frac{c}{x}$);

 $y = \sqrt{c^2 - x^2}$ over the domain $0 \le x \le c$; and an infinite number of others. (ii) They are all symmetrical in the line y = x.

(c)
$$y = 3 - x^2$$
, $x \ge 0$

(d)
$$\left(\frac{\sqrt{13}-1}{2}, \frac{\sqrt{13}-1}{2}\right)$$