Year 12 Extension 1 Mathematics Term 3, 2007 Week 7

Name:

HSC ASSESSMENT TASK

50 Minutes Total Marks: 36

 Teacher:		
Teacher:		

Question 1 (12 Marks)

Marked by SKB

Having been despatched to the boundary on the previous two balls, Angas, the crafty medium pace bowling cricketer, then bowls a slower ball at 15 m/s to the elegant right-hander Prinya. Prinya mishits this ball from a point O on the pitch at a velocity of 25m/s inclined at an angle θ to the positive direction of the pitch (x - axis). The ball just misses a bird flying at an altitude of 10m which is 5m horizontally from O. If we assume that air resistance is neglected and that the acceleration due to gravity, $g = 10 \, ms^{-2}$:

- a) Prove that the parametric equations describing the ball's motion are: x = 25t cos θ and y = 25t sin θ 5t²
 b) Prove that θ satisfies the equation tan² θ 25tan θ + 51 = 0
 c) Find the value(s) of θ to the nearest minute.
 d) By using your answer(s) to (c) find the shortest time for the ball to reach the pitch in seconds to 2 decimal places.
- e) By using your answer(s) to (c) find the maximum height reached by the ball to the nearest m. 2
- f) Find the possible directions of motion when the ball hits the ground to the nearest minute.

Question 2 (12 Marks)

Start a new page

Marked by HRK

3

- a) Show that $\left(x^2 \frac{1}{x}\right)^{11}$ does not contain a term independent of x.
- b) Find the greatest coefficient in the expansion of $(2+3x)^{10}$
- Use the binomial expansion of $(1+x)^{2n}$ to prove that $\sum_{k=1}^{2n} {2n \choose k} = 4^n 1$ 3
- An athlete finds that over a long period he wins $\frac{3}{4}$ of his races. If he intends running in 5 races over the coming weeks, what is the probability that he wins the majority of them?

2

a)	How mar	ny arrangements of the word GOBBLEDEGOOK are possible?	
b)	Consider a pack of 40 cards consisting of the colours red, blue, yellow and green, each with cards numbered 1 through to 10. A hand of five cards is a from the pack. Find the probabilities that the cards were		
	(i)	three 4's and two 6's	1
	(ii)	in ascending order	2
c)	Seven peo	ple are to be seated at a round table.	
	(i)	How many arrangements are possible?	1
	(ii)	Two people, Kevin and Jill, refuse to sit next to each other.	.1
		How many seating arrangements are possible?	3
d)	A committ	tee of 3 is to be elected from a club of 8 members.	
	(i)	How many different committees can be formed?	1
	(ii)	If there are 4 Queenslanders in the club, what is the probability	1
		that a randomly selected committee of 3 contains only	
		Queenslanders?	2

.. 0 = 87°29 ar 65°57 / (to nevert minute) (d) Ball, hits ground when y=0 -- 0 = 25 t sn0 - St2 -: 0= st (ssin 0-t) --- (=0 or t= SsnQ (Cinifial) (Cinal) When 0 = 87°291 (= 5.00 (2dp) 0 = 65°57 (= 4.57 (2d.p) -shartest time for ball is 4-57s (2dg) (e) At maximum height $\dot{y} = 0$ $\dot{z} = \frac{2 s_{no}}{10} = \frac{s_{sno}}{2}$ $-y_{max} = 25\left(\frac{ssn0}{2}\right)sn0 - 5\left(\frac{scn0}{2}\right)^{2}$ Max height will occur for 0 = 870291 -- ymax = 125 (sn 870 291)2 = 31 m (to nearst m) (f) Ball hits ground after 5 sin 0 s fram (11) : 2=25cosQ g = -10(55m0)+255m0 Now to $\lambda = \left| \frac{\dot{y}}{\dot{z}} \right| = \tan \theta$

· B, direction of motion, is either

or 1800-65°571

ie 92°31' or 114°3' (do nevert minute)

1800-870291

$$2(a) \quad \text{For} \left(x^{2} - \frac{1}{x} \right)^{1}$$

$$= \text{"Cr} \left(x^{2} \right)^{1/2} \left(-\frac{1}{x} \right)^{r}$$

$$= \text{"Cr} \left(x^{22-2r-r} \left(-1 \right)^{r} \right)^{r}$$

$$= \text{"Cr} \left(x^{22-3r} \left(-1 \right)^{r} \right)^{r}$$

For term independent of x: 22-31=0

: 1 = 7\frac{1}{3}

But it must be a positive integer or zero

=) $(x^2 - \frac{1}{x})^n$ does not contain a term independent of x.

(b) For
$$(2+3x)^{10}$$

consider coeff $\frac{1}{10}$

for greatest coefficient.

$$\frac{(0-i)! \, i, \, 10! \, 3}{10! \, (1!-i)! \, (i-i)! \, (2-i)! \, 3} > 1$$

(idvarad x fams)

$$\frac{(1-r)3}{(r)2} > 1$$

: 33-31 > 21

:. 1= 6

(c)
$$(1+x)^{2n} = \bigotimes_{k=0}^{2n} \binom{2n}{k} x^k$$

Let
$$x=1$$
 : $2^{2n} = \sum_{k=0}^{2n} {2n \choose k}.|^k$

$$4^n = \binom{2n}{6} + \sum_{k=1}^{2n} \binom{2n}{k}$$

$$-14^{n} - 1 = \left(\begin{array}{c} 2n \\ k = 1 \end{array}\right), \text{ as } \left(\begin{array}{c} 2n \\ 0 \end{array}\right) = 1$$

(d) consider
$$(q+p)^{5}$$

where $P(une)=p=\frac{3}{4}$
 $P(loses)=q=\frac{1}{4}$

: P(wws majority of races)
$$= {}^{5}C_{3} {}^{2}p^{3} + {}^{5}(4p)^{4} + {}^{5}(5p^{5})$$

$$= {}^{5}C_{3} {}^{2}(\frac{1}{4})^{2}(\frac{3}{4})^{3} + {}^{5}(4 \cdot \frac{1}{4}(\frac{3}{4})^{4} + \frac{1}{4}(\frac{3}{4})^{4}$$

$$= 10\left(\frac{27}{1024}\right) + 5\left(\frac{81}{1024}\right) + \frac{243}{1024}$$

$$= \frac{459}{512} \left(\text{or } 0.896484375...\right)$$

$$(b)_{(i)}P(34^{1}s,26^{1}s) = \frac{4C_{3}\times^{4}C_{2}}{4^{\circ}C_{5}}$$

$$= \frac{1}{27417}$$

(11) P(ix ascerding arder) =
$$(10-S+1) \times 4(1 \times 4)$$

 $\times 4(1 \times 4) = 40$
 $= \frac{6 \times 4^{S}}{400}$

$$= \frac{6 \times 4^{5}}{4^{\circ}C_{5}}$$

$$= \frac{256}{27417}$$

3 (c) (i) No. of arrangements = 1x6! = 720.

(11) Consider Kern + Jill to sit together. This is achieved in 21 ways. This leaves (7-2)+1

= 6 people units.

:No of arrangements Kernit Jill together = 1x5!x2!

: No of ways Kerit Jill not together = 6! - 1 x Sl x 2! = 480

(d) (i) No. of committees = 8C3 = 56 v

(ii) $P(\text{only G'lders}) = \frac{4C_3}{8C_3}$ $= \frac{4}{56} \vee$ $= \frac{1}{14} \vee$