J.M.J.Ch

MARCELLIN COLLEGE RANDWICK

YEAR 11

ACCELERATED MATHEMATICS Assessment Task #2

2011

Weighting: 70 % towards Preliminary mark						
STUDENT NAM	IE:	MARK:	/36			
Time Allowed:	60 minutes.					
	 Answer all questions. Begin each question on a new page. Show working where necessary. Marks may not be awarded for answers only. 					

OUTCOMES TO BE ASSESSED:

- P1 demonstrates confidence in using mathematics to obtain realistic solutions to problems.
- P2 provides reasoning to support conclusions which are appropriate to the context.
- P3 performs routine arithmetic and algebraic manipulation involving trigonometric identities.
- P5 understands the concept of a function and the relationship between a function and its graph.

Question 1 (12 marks)

a

The diagram shows a parallelogram ABCD. The points E(1,2), B(5,8) and C(3,-1) are shown on the number plane.

Copy the diagram on to your answer sheet.

i.	E is the midpoint of AC . Show that the coordinates of A are (-1,5).	2
· ii.	Find the gradient of the line AB.	1
iii.	Show that the equation of DC is $x - 2y - 5 = 0$.	2
iv.	Calculate the length of AB in the form $k\sqrt{5}$ units.	1
v.	Calculate the perpendicular distance between the lines DC and AB .	2
vi.	Hence, or otherwise, calculate the area of the parallelogram ABCD.	1

b. Find the equation of a line passing through the midpoint of the interval with endpoints A(2,3) and B(5,7) parallel to the line 2x + 3y - 7 = 0.

Question 2 (12 marks)

- a. Consider the quadratic equation $x^2 kx + (k+3) = 0$.
- i. Find the discriminant leaving your answer in simplest form.
- ii. For what values of k does the equation have no real roots?
- iii. If the product of the roots is equal to three times the sum of the roots, find the value of k.
- b. If α and β are the roots of the quadratic equation $2x^2 x 5 = 0$, find:
- i. $\alpha + \beta$

1

- ii. $\alpha \beta$
- iii. $(\alpha-2)(\beta-2)$
- c. Solve $4\cos^2 \theta + 2\sin \theta = 3$ for $0^{\circ} \le \theta \le 360^{\circ}$ correct to the nearest minute.

Question 3 (12 marks)

a.	Find the centre and radius of the circle whose equation is $x^2 + y^2 + 4x + 8y + 11 = 0.$	3
b.	A parabola has the equation $x^2 - 6x - 6y - 3 = 0$.	
Fi	nd:	
i.	the focal length.	2
ii.	the coordinates of the vertex.	1
iii.	the coordinates of the focus.	1
iv.	the equation of the directrix.	1

c. A point P(x, y) moves so that its distance from the point A(2,5) is twice its distance from the line x = -1. Draw a diagram and find the equation of the locus P.

