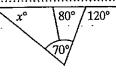

CALCULATOR ALLOWED

Advanced level questions

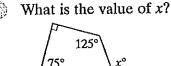
- A polygon has each of its angles equal to 144°. What type of polygon is it?
 - A hexagon
- B octagon
- C decagon
- D dodecagon
- A straight line has divided a triangle into two parts. All of the angles are marked.



Which expression is not equal to 180°?

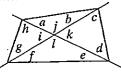
- Aa+b+c+d
- B a+d+e+f
- $\mathbb{C} \ a+b+f$
- $\mathbf{D} e + c + d$
- Four squares can meet and fill the space at a single point. Which of these cannot meet at a single point?

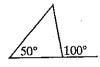
- A 3 regular hexagons
- B 1 regular hexagon, 1 equilateral triangle and two squares
- C 2 regular octagons and 1 square
- D 1 regular octagon, 2 equilateral triangles and 1 square
- What is the value of x in this diagram?
 - A 60 C_40
- **B** 50 D_{30}



This clock shows that it is 8 o'clock.

> What is the size of the smaller angle between the two hands?

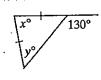

- A polygon has two angles of 150° and three other equal angles. What size is each of those three
- remaining angles?


- A polygon has two angles of 90° and each of its remaining angles is 120°. What type of polygon is it?
 - A pentagon
- B hexagon
- C octagon
- D decagon

A quadrilateral is divided into four parts with two straight lines. All of the angles are marked.

Which expression is equal to 360°?

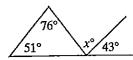
- $\mathbf{A} a + b + \mathbf{j}$
- B d+e+f+g
- $\mathbb{C} i+j+k+l$
- D h+g+c+d
- Which description applies to this triangle?
 - A acute-angled, isosceles
 - B acute-angled, scalene
 - C obtuse-angled, isosceles
 - D obtuse-angled, scalene


Which could not be placed beside the dodecagon to fill the space at P?

- A a regular hexagon and a square
- B 2 equilateral triangles and a square
- C a dodecagon and an equilateral triangle
- D 4 equilateral triangles
- 12 The diagram shows a square and two regular hexagons. What is the value of x?

- Which is correct?
 - A x = 25 and y = 25
 - **B** x = 50 and y = 80
 - C x = 50 and y = 50
 - **D** x = 80 and y = 50

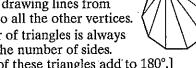
What is the value of x?



What is the value of x?

150°

What is the value of x?



1 C 2 A 3 D 4 B 5 120° 6 80° 7 110 8 A 9 C 10 A 11 D 12 30 13 D 14 135 15 60 16 84

[A polygon can be divided into triangles by drawing lines from one vertex to all the other vertices. The number of triangles is always 2 less than the number of sides. The angles of these triangles add to 180°.] Consider the options:

A hexagon has 6 angles.

Sum of angles =
$$(6 - 2) \times 180^{\circ}$$

= $4 \times 180^{\circ}$
= 720°

But $6 \times 144^{\circ} = 864^{\circ}$

So the polygon is not a hexagon.

An octagon has 8 angles.

Sum of angles =
$$(8 - 2) \times 180^{\circ}$$

= $6 \times 180^{\circ}$
= 1080°

But $8 \times 144^{\circ} = 1152^{\circ}$

So the polygon is not an octagon.

A decagon has 10 angles.

Sum of angles =
$$(10 - 2) \times 180^{\circ}$$

= $8 \times 180^{\circ}$
= 1440°

Now $10 \times 144^{\circ} = 1440^{\circ}$

So the polygon is a decagon.

2 Angles in a straight line add to 180°. So $b + c = 180^{\circ}$

So a + b + c + d must add to more than 180°. The expression that is not equal to 180° is a+b+c+d.

3 Angles at a point add to 360°. Consider the options.

A hexagon has 6 angles.

Sum of angles =
$$(6 - 2) \times 180^{\circ}$$

= $4 \times 180^{\circ}$
= 720°

Each angle of a regular hexagon = $720^{\circ} \div 6$ $= 120^{\circ}$

Now $3 \times 120^{\circ} = 360^{\circ}$

So 3 regular hexagons can meet and fill the space at a point.

Each angle of a regular hexagon is 120°.

Each angle of an equilateral triangle is 60°.

Each angle of a square is 90°.

Now
$$120^{\circ} + 60^{\circ} + 2 \times 90^{\circ} = 360^{\circ}$$

So a regular hexagon, an equilateral triangle and 2 squares can meet and fill the space at a point.

An octagon has 8 angles.

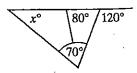
Sum of angles =
$$(8 - 2) \times 180^{\circ}$$

= $6 \times 180^{\circ}$
= 1080°

Each angle of a regular octagon = $1080^{\circ} \div 8$ $= 135^{\circ}$

Now
$$2 \times 135^{\circ} + 90^{\circ} = 360^{\circ}$$

So 2 regular octagons and a square can meet and fill the space at a point.



$$135^{\circ} + 2 \times 60^{\circ} + 90^{\circ} = 345^{\circ}$$

So a regular octagon, 2 equilateral triangles and a square will not meet and fill the space at a point.

The exterior angle of a triangle is equal to the sum of the interior opposite angles.

So
$$120^{\circ} = 70^{\circ} + x^{\circ}$$

 $x = 120 - 70$
 $= 50$

5 A complete revolution is 360°. So in one hour, the minute hand of a clock turns through 360°. The face of the clock is divided into 12 sections. So the angle in each section = $360^{\circ} \div 12$ $= 30^{\circ}$

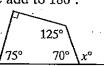
At 8 o'clock there are 4 sections between the two hands.

Angle =
$$4 \times 30^{\circ}$$

= 120°

6 The polygon has 5 angles so it is a pentagon. Sum of angles = $(5-2) \times 180^{\circ}$

Now 2 angles measure 150°.


Sum of remaining angles = $540^{\circ} - 2 \times 150^{\circ}$ $= 540^{\circ} - 300^{\circ}$ = 240°

Each angle =
$$240^{\circ} \div 3$$

= 80°

The angles of a quadrilateral add to 360°. Sum of given angles = $75^{\circ} + 90^{\circ} + 125^{\circ}$

Angles in a straight line add to 180°.

$$So x + 70 = 180$$
$$x = 110$$

8 Consider the options.

A pentagon has 5 angles.

Sum of angles =
$$(5 - 2) \times 180^{\circ}$$

= $3 \times 180^{\circ}$
= 540°

Now
$$2 \times 90^{\circ} + 3 \times 120^{\circ} = 180^{\circ} + 360^{\circ}$$

= 540°

The polygon is a pentagon.

9 Consider the options.

$$a + b + j = 180^{\circ}$$
 (angle sum of a triangle)
So $a + b + j \neq 360^{\circ}$

$$a + b + c + d + e + f + g + h = 360^{\circ}$$

(angle sum of a quadrilateral)

So
$$d + e + f + g \neq 360^{\circ}$$

$$i + j + k + l = 360^{\circ}$$
 (angles at a point)

$$h + g + i + c + d + k = 360^{\circ}$$
 (angles in

2 triangles)

So
$$h + g + c + d \neq 360^{\circ}$$

Of the options the only expression that must equal 360° is i + j + k + l.

10 [Find the remaining angles of the triangle:]

The triangle has 2 equal angles so it is isosceles.

All of the angles are acute.

The triangle is acute-angled and isosceles.

11 A dodecagon has 12 angles.

Sum of angles =
$$(12 - 2) \times 180^{\circ}$$

= $10 \times 180^{\circ}$
= 1800°

Each angle of a regular dodecagon

$$= 1800^{\circ} \div 12$$

$$= 150^{\circ}$$

Angles at a point add to 360°.

Remaining angles =
$$360^{\circ} - 150^{\circ}$$

$$= 210^{\circ}$$

Now consider the options.

A hexagon has 6 angles.

Sum of angles =
$$(6-2) \times 180^{\circ}$$

$$=4 \times 180^{\circ}$$

$$=720^{\circ}$$

Each angle of a regular hexagon = $720^{\circ} \div 6$ = 120°

Each angle of a square is 90°.

Now
$$120^{\circ} + 90^{\circ} = 210^{\circ}$$

So a regular hexagon and a square will fill the space at P.

Each angle of an equilateral triangle is 60°.

$$2 \times 60^{\circ} + 90^{\circ} = 210^{\circ}$$

So 2 equilateral triangles and a square will fill the space at P.

$$150^{\circ} + 60^{\circ} = 210^{\circ}$$

So a regular dodecagon and an equilateral triangle will fill the space at P.

$$4 \times 60^{\circ} = 240^{\circ}$$

So 4 equilateral triangles could not be placed beside the dodecagon and fill the space at P.

12 A hexagon has 6 angles.

Sum of angles =
$$(6-2) \times 180^{\circ}$$

= $4 \times 180^{\circ}$
= 720°

Each angle of a regular hexagon = $720^{\circ} \div 6$

Each angle of a square $= 90^{\circ}$.

Now angles at a point add to 360°.

$$2 \times 120 + 90 + x = 360$$

$$330 + x = 360$$

$$x = 360 - 330$$

$$x = 30$$

13 Angles in a straight line add to 180° so the third angle of the triangle must be 50°.

Now the triangle is isosceles. So y = 50.

The angles of a triangle add to 180°.

So
$$x + 2 \times 50 = 180$$

$$x + 100 = 180$$

$$x = 80$$

$$x = 80 \text{ and } y = 50$$

14 The polygon has 5 sides so it is a pentagon.

Sum of angles =
$$(5-2) \times 180^{\circ}$$

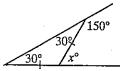
$$= 3 \times 180^{\circ}$$

$$= 540^{\circ}$$

Now 3 angles are right angles.

Sum of remaining angles =
$$540^{\circ} - 3 \times 90^{\circ}$$

$$= 540^{\circ} - 270^{\circ}$$


$$= 270^{\circ}$$

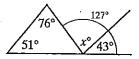
So 2 equal angles add to 270°.

$$x = 270 \div 2$$

15 Angles in a straight line add to 180°.

So the angle at the top of the triangle is 30°. But the triangle is isosceles, so another angle is also 30°.

Now, the exterior angle of a triangle is equal to the sum of the interior opposite angles.


So
$$x = 30 + 30$$

$$x = 60$$

16 The exterior angle of a triangle is equal to the sum of the interior opposite angles.

The exterior angle =
$$76^{\circ} + 51^{\circ}$$

$$= 127^{\circ}$$

So
$$x + 43 = 127$$

$$x = 127 - 43$$

$$x = 84$$