TEST 4

Scales and Maps

Marks:

/40

Time: 45 minutes

Name:	Date:

INSTRUCTIONS TO CANDIDATES

- 1. Answer all the questions.
- 2. Calculators may **not** be used.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 1 A model of a racing bicycle is made to a scale of $\frac{1}{20}$.
 - (a) Calculate the length of the handle bar on the model, in centimetres, if the actual length of the handle bar is 0.6 m.
 - (b) The area of the front wheel of the model is 12 cm². Calculate the actual area of the front wheel of the bicycle, giving your answer in square metres.

Answer	(a)	cm	[1
	(h)	m^2	[2

- A plan of a shop is drawn to a scale of 1:200.
 - (a) Find the width, in metres of the shop which is represented by a line 3.5 cm long on the plan.
 - (b) The area of the shop space is 54 m². Find, in square centimetres, the area on the plan which

- (a) A bridge 2.5 km long is represented by a line of 4 cm on a map. Find the R. F. of the map. (b) A map is drawn to a scale of 1:50 000. Find, in square kilometres, the actual area of a wildlife sanctuary measuring 20 cm² on the map.
- (c) A rectangular plot of land ABCD is drawn to a scale of 1: 200 as shown below. Calculate, in square metres, the actual area of the plot of land.

- (a) Two island resorts are located 2.5 km apart. Calculate, in centimetres, their distance apart on the map.
- (b) On the map, a lagoon has an area of 20 cm². Calculate, in square kilometres, the actual area of the lagoon.

Answer	(a) cm	1 [1]
	(b)km	² [2]

5 A map is drawn to a scale of 1:50 000.

(a) The distance between two cities on a map is 165 cm. Calculate the actual distance between these two cities, giving your answer in kilometres.

(b) The actual area of a park is 2.8 km². Calculate the area on the map which represents the park, giving your answer in square centimetres.

Answer (a) km [1] (b) cm² [2] (a) A model of a tanker is made. The length of the model is 3.5 cm and the length of the actual tanker is 14 m. Express the scale of the model in the form 1: n.

(b) An area of 225 cm² on a map represents the area of a forest reserve of 36 km². Find the R. F. of the map.

(c) The plan of a theatre is drawn to a scale of 1:50. Find, in square metres, the actual area of the rectangular stage measuring 24 cm by 15 cm on the plan.

Answer (a)[1]

(b) R. F. =[2]

(c) m² [2]

. of

- 1 cm on a map represents an actual distance of 300 m. A triangular plot of land is represented by the triangle shown below.
 - (a) Find the actual perimeter, in metres, of the plot of land.
 - (b) Calculate the actual area of the plot of land in hectares. (Given 1 hectare = $10\ 000\ m^2$.)

Answer (a) m [2] (b) ha [2]

8	A map	is	drawn	to	a	scale	of	1	:	400	000
---	-------	----	-------	----	---	-------	----	---	---	-----	-----

- (a) Find the distance, in kilometres, between two villages which are represented on the map by points 6.5 cm apart.
- (b) An island covers an area of 640 km². Find, in square centimetres, the area representing the island on the map.

Answer	(a)	km [1]
	(b)	cm² [2]

9 Given that 5 cm on a map represents 6 km on the ground,

- (a) calculate the distance, in kilometres, between two bus stops which are represented by a line of length $1\frac{1}{2}$ cm on the map,
- (b) express the scale of the map in the form 1:n,
- (c) calculate, in square centimetres, the area on the map which represents an actual vineyard which measures 54 km².

Answer	(a) km	[1]
	(b)	[1]
	(c) cm ²	[2

- (a) Find the length, in metres, of a wall in the library represented by a line of 6 cm on the plan.
- (b) The children's reading corner in the library covers an area of 18 m². Find, in square centimetres, the area representing the reading corner on the plan.
- (c) The reference section in the library is represented on the plan by an area of 36 cm². Find, in square centimetres, the area representing this section on a second plan whose scale is 1:50.

Answer	(a)	m	[1]
	(b)	cm ²	[2]
	(c)	cm^2	[3]

(b) (i) Since $\triangle ABC$ is similar to $\triangle ADE$,

$$\frac{AB}{AD} = \frac{BC}{DE}$$

$$\frac{AB}{10} = \frac{5}{8}$$

$$AB = \frac{5}{8} \times 10$$

$$= 6\frac{1}{4} \text{ cm}$$

$$BD = AD - AB$$

$$= 10 - 6\frac{1}{4}$$

$$= 3\frac{3}{4} \text{ cm}$$

(ii) $\triangle DBC$ is similar to $\triangle DAF$.

$$\therefore \frac{AF}{BC} = \frac{DA}{DB}$$

$$\frac{AF}{5} = \frac{10}{3\frac{3}{4}}$$

$$AF = \frac{10}{3\frac{3}{4}} \times 5$$

$$= 13\frac{1}{3} \text{ cm}$$

(c) $\triangle CDE$ is similar to $\triangle CFA$.

$$\therefore \frac{DC}{CF} = \frac{DE}{AF}$$

$$\frac{DC}{CF} = \frac{8}{13\frac{1}{3}}$$

$$= 8 \times \frac{3}{40}$$

$$= \frac{3}{5}$$

Test 4: Scales and Maps

1. (a) 1 cm represents 20 cm or 0.2 m. \therefore 0.6 m is represented by 100 cm = 1 m $20 \text{ cm} = \frac{20}{100}$

 $\therefore 0.6 \text{ m is represented by} \qquad 20 \text{ cm} = \frac{20}{100} \text{ m}$ $\frac{0.6}{0.2} \text{ cm} = 3 \text{ cm}. \qquad = 0.2 \text{ m}$

The length of the handle bar on the model is 3 cm.

Teacher's Tip

A scale of $\frac{1}{20}$ means a length of 1 cm on the model represents an actual length of 20 cm.

(b) 1 cm represents 0.2 m.

∴ 1 cm² represents $(0.2 \text{ m})^2 = 0.04 \text{ m}^2$.

 \therefore 12 cm² represents 12 × 0.04 = 0.48 m².

The actual area of the front wheel is 0.48 m².

Teacher's Tip

The area scale of a map is the square of its linear scale. If the linear scale is 1:n, then the area scale is $(1)^2:(n)^2=1:n^2$.

2. (a) 1 cm represents 200 cm or 2 m.
∴ 3.5 cm represents 3.5 × 2 = 7 m.
The width of the shop is 7 m.

(b) 2 m is represented by 1 cm. 1 m is represented by $\frac{1}{2}$ cm.

 \therefore 1 m² is represented by $\left(\frac{1}{2} \text{ cm}\right)^2 = \frac{1}{4} \text{ cm}^2$.

 \therefore 54 m² is represented by 54 × $\frac{1}{4}$ = 13.5 cm². The area of the plan representing the shop space is 13.5 cm².

 \therefore the R.F. of the map is $\frac{1}{62500}$

Teacher's Tip

The representative fraction (R.F.) expresses the linear scale of a map 1: n in the form $\frac{1}{n}$.

(b) 1 cm represents 50 000 cm or $\frac{1}{2}$ km.

 $\therefore 1 \text{ cm}^2 \text{ represents } \left(\frac{1}{2} \text{ km}\right)^2 = \frac{1}{4} \text{ km}^2.$

 \therefore 20 cm² represents $20 \times \frac{1}{4} = 5 \text{ km}^2$.

The actual area of the wildlife sanctuary is 5 km².

Area of rectangle $ABCD = 5 \times 3 = 15 \text{ cm}^2$ 1 cm represents 200 cm or 2 m.

 \therefore 1 cm² represents (2 m)² = 4 m².

 \therefore 15 cm² represents 15 × 4 = 60 m².

The actual area of the rectangular plot of land is 60 m^2 .

space

- 4. (a) 1 km is represented by 5 cm. \therefore 2.5 km is represented by 2.5 \times 5 = 12.5 cm. Their distance apart on the map is 12.5 cm.
 - (b) 5 cm represents 1 km. 1 cm represents $\frac{1}{5}$ km.
 - $\therefore 1 \text{ cm}^2 \text{ represents } \left(\frac{1}{5} \text{ km}\right)^2 = \frac{1}{25} \text{ km}^2.$
 - \therefore 20 cm² represents 20 \times $\frac{1}{25} = \frac{4}{5} = 0.8$ km². The actual area of the lagoon is 0.8 km².
- 5. (a) 1 cm represents 50 000 cm or $\frac{1}{2}$ km.
 - \therefore 165 cm represents $165 \times \frac{1}{2} = 82 \frac{1}{2}$ km.

The actual distance between the cities is $82\frac{1}{2}$ km.

(b) $\frac{1}{2}$ km is represented by 1 cm.

1 km is represented by 2 cm.

- \therefore 1 km² is represented by (2 cm)² = 4 cm².
- \therefore 2.8 km² is represented by 2.8 × 4 = 11.2 cm². The area of the park on the map is 11.2 cm².
- 6. (a) 3.5 cm: 14 m 1 m = 100 cm= 3.5 cm : 1400 cm $14 \text{ m} = 14 \times 100$ $= 1 \text{ cm} : \frac{1400}{3.5} \text{ cm}$ = 1400 cm

 - \therefore the scale of the model is 1:400.
 - (b) 225 cm² represents 36 km². (15 cm)² represents (6 km)²,
 - : 15 cm represents 6 km.
 - 1 cm represents $\frac{600\ 000\ \text{cm}}{15} = 40\ 000\ \text{cm}$.
 - : the R.F of the map is $\frac{1}{40000}$.
 - (c) Area of rectangular stage on the plan $= 24 \times 15$

 $= 360 \text{ cm}^2$

1 cm represents 50 cm or $\frac{1}{2}$ m.

- \therefore 1 cm² represents $\left(\frac{1}{2} \text{ m}\right)^2 = \frac{1}{4} \text{ m}^2$.
- \therefore 360 cm² represents 360 × $\frac{1}{4}$ = 90 m².

The actual area of the stage is 90 m².

Perimeter of the plot of land on the map = 4.5 + 5 + 8.5

= 18 cm

 $=9 \text{ cm}^2$

1 cm represents 300 m.

 \therefore 18 cm represents $18 \times 300 = 5400$ m.

The actual perimeter of the plot of land is 5400 m.

(b) Area of the plot of land on the map

$$= \frac{1}{2} \times 4.5 \times 4$$

$$= 9 \text{ cm}^2$$

$$h \text{ Area of } \triangle$$

$$b = \text{base}, h = \text{height}$$

1 cm represents 300 m.

- :. 1 cm² represents $(300 \text{ m})^2 = 90 000 \text{ m}^2$.
- :. 9 cm² represents $9 \times 90\ 000 = 810\ 000\ m^2$.

$$810\ 000\ m^2 = \frac{810\ 000}{10\ 000}\ ha$$
 $1\ ha = 10\ 000\ m^2$ $= 81\ ha$

The actual area of the plot of land is 81 ha.

- 8. (a) 1 cm represents 400 000 cm $1 \text{ km} = 100\ 000 \text{ cm}$ or 4 km.
 - \therefore 6.5 cm represents $6.5 \times 4 = 26$ km. The distance between the two villages is 26 km.
 - (b) 4 km is represented by 1 cm. 1 km is represented by $\frac{1}{4}$ cm.
 - \therefore 1 km² is represented by $\left(\frac{1}{4} \text{ cm}\right)^2 = \frac{1}{16} \text{ cm}^2$.
 - \therefore 640 km² is represented by 640 × $\frac{1}{16}$ = 40 cm². The area of the island on the map is 40 cm^2 .
- 9. (a) 5 cm represents 6 km.

1 cm represents $\frac{6}{5}$ km or 1.2 km.

 $\therefore 1\frac{1}{2}$ cm represents $1.5 \times 1.2 = 1.8$ km.

The distance between the two bus stops is $1.8 \ km$.

- (b) 1 cm : 1.2 km= 1 cm : 120 000 cm
 - \therefore the scale of the map is 1:120 000.
- (c) $\frac{6}{5}$ km is represented by 1 cm.
 - 1 km is represented by $\frac{5}{6}$ cm.
 - \therefore 1 km² is represented by $\left(\frac{5}{6} \text{ cm}\right)^2 = \frac{25}{36} \text{ cm}^2$.
 - ∴ 54 km² is represented by $54 \times \frac{25}{36} = 37 \frac{1}{2}$ cm². The area on the map representing the vineyard is $37 \frac{1}{2}$ cm².
- 10. (a) 1 cm represents 150 cm or 1.5 m.
 ∴ 6 cm represents 6 × 1.5 = 9 m.
 The length of the wall of the library is 9 m.
 - (b) $\frac{3}{2}$ m is represented by 1 cm.
 - 1 m is represented by $\frac{2}{3}$ cm.
 - \therefore 1 m² is represented by $\left(\frac{2}{3} \text{ cm}\right)^2 = \frac{4}{9} \text{ cm}^2$.
 - \therefore 18 m² is represented by 18 $\times \frac{4}{9} = 8$ cm².

The area representing the reading corner on the plan is 8 cm^2 .

- (c) 1 cm represents $\frac{3}{2}$ m.
 - $\therefore 1 \text{ cm}^2 \text{ represents } \left(\frac{3}{2} \text{ m}\right)^2 = \frac{9}{4} \text{ m}^2.$
 - \therefore 36 cm² represents 36 $\times \frac{9}{4} = 81 \text{ m}^2$.

The actual area of the reference section of the library is 81 m^2 .

50 cm or $\frac{1}{2}$ m is represented by 1 cm. 2nd plan.

- 1 m is represented by 2 cm.
- \therefore 1 m² is represented by $(2 \text{ cm})^2 = 4 \text{ cm}^2$.
- \therefore 81 m² is represented by 81 × 4 = 324 cm².

The area representing the reference section of the library on the second plan is 324 cm^2 .

Alternative method:

$$\frac{150 \text{ cm}}{50 \text{ cm}} = 3$$

- \therefore the scale of the first plan to the second plan is 1:3.
- 1 cm represents 3 cm.
- $1 \text{ cm}^2 \text{ represents } (3 \text{ cm})^2 = 9 \text{ cm}^2$
- \therefore 36 cm² represents 36 × 9 = 324 cm².

The area representing the reference section of the library on the second plan is 324 cm².

Test 5: Symmetry

1. (a) Order of rotational symmetry = 2

Teacher's Tip

- 1. Line symmetry A figure has line symmetry if it can be folded on a line so that one half would fit exactly on top of the other half.
- Rotational symmetry A figure has rotational symmetry if the shape can be rotated less than 360° about a point so that it matches the original figure.
 The point of rotation is called the centre of rotational symmetry.
- 3. Order of rotational symmetry The number of ways a figure can map onto itself by rotation until it gets back to its original position.

The diagram shows that the figure has rotational symmetry of order 2.

- 2. (a) (i) No. of lines of symmetry = 0
 - (ii) Order of rotational symmetry = 8
 - (b) (i) No. of lines of symmetry = 2

- (ii) Order of rotational symmetry = 2
- a) p b o d qorb p o q d