LEVEL 1 — GRAPHS

Note: Only turn back to page number if you have difficulty

Page

Q1. The table below shows the growth of Australia's population since the turn of the century.

96

Year	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990
Population ('000)	3600	4500	5300	6500	7000	8400	10 300	12 600	14 500	16 5 00

- (a) Draw a line graph to illustrate the information in the table.
- (b) Which decade had the greatest increase in population?
- (c) Calculate the percentage increase from 1950 to 1990.

Q2. The population composition of the United Kingdom is as follows:

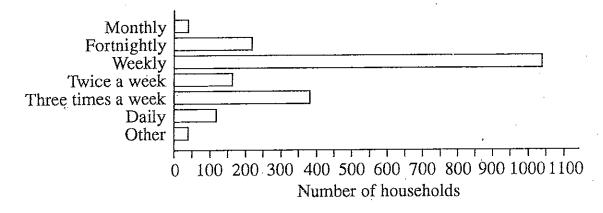
97

•	Country	Population ('000)
•	England	45 374
	Scotland	2 701
	Wales	5 190
	N. Ireland	1 484
	Isle of Man/ Channel Islands	160

- (a) Draw a column graph to represent the information.
- (b) Draw a bar graph 10 cm in length.
- (c) Draw a sector graph, calculating angles to the nearest degree.
- Q3. The following bar graph shows the distribution of my weekly income.

97

Rent	Electricity & Water Groceries	Entertainment	Loan Repayment	Savings
------	----------------------------------	---------------	-------------------	---------

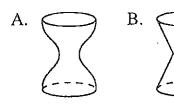

- (a) What percentage of my income is put toward savings?
- (b) What percentage is represented by spending on groceries and entertainment combined?
- (c) If my wage is \$520 per week, what is my weekly rent expense?
- (d) What angle would each category represent in a sector graph?

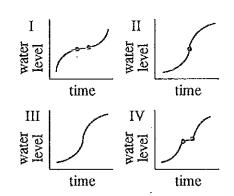
LEVEL 1 — GRAPHS CONTINUED

Note	e: Only turn back to page number if you have difficulty	Page
Q4.	The graph shows the parking costs for an inner city parking station: (a) What is the cost of parking for 1 hour? (b) What is the cost for 2 h and 58 minutes? (c) How long can the car be parked if the cost is to be \$8 or less? (d) How much is the cost of parking 5 hours or more?	98
Q5.	The graph shows the journeys of two motorists, Sean and Con, and gives their distances from town A. (a) Who travels the fastest in the first hour? (b) At what time do their paths cross? (c) How far is Con from town A when Sean begins his return trip? (d) How far apart are they at noon? (e) How far does each motorist travel?	99
Q6.	An elastic bungy cord is tested with different weights, and the length of the cord recorded for each weight. (a) Draw a line of best fit. (b) Estimate the length of the cord if a 58 kg weight is attached. (c) Estimate the weight that would produce a length of 25 m. (d) Estimate the extension of the cord if a 71 kg weight is attached.	100
Q7.	(a) In which of the graphs does: (i) Y increase slowly at first then quickly? (ii) Y increase at a constant rate? (iii) Y increase quickly at first then slowly? (b) The container pictured is filled with water at a steady rate. Which graph best represents the level of water in the container?	101

LEVEL 2 — GRAPHS

Q1. 2000 households in NSW were asked how often they perform their grocery shopping. The results are shown in the graph below.


- (a) Convert the information shown in the column graph to: (i) a sector graph (correct to the nearest degree) (ii) a bar graph of total length 20 cm.
- (b) What percentage of households shop less frequently than twice a week?


Q2.

200
180
160
140
120
100
80
40
20
7 8 9 10 11 noon 1 2

The graph shows the journeys of two motorists, travelling on the same road in the same direction. Mandy leaves from town X and Jung leaves from town Y.

- (a) At what time do each of the motorists begin their journey?
- (b) At what time do they pass each other for the third time?
- (c) How far has Jung travelled when Mandy begins her return journey?
- (d) What is the average speed of each motorist? (Do not include rest time. Answer to 1 d.p.)
- Q3. (a) Which graph best represents the water level in each glass if they are both filled at a constant rate:

(b) P is the point on the circumference of a wheel. Sketch a graph to show the height of P above the ground if the wheel is rotated clockwise from a position where P is on the ground.

LEVEL 1 — STATISTICS

Note	e: (Only t	urn b	ack to	page	numbe	er if yo	ou hav	e diff	iculty			Page
Q1.				e tosse ds was						ach th	row th	ie	
	`4	3	1	2	5	1	2	2	3	1			
	0	2	1	4	2	3	1	3	2	3			
	1	1	. 2	3	2	2	4	1	3	2			
	(a)	Org	anise	the da	ta inte	o a fre	quenc	y disti	ibutio	on tabl	e.		105
	(b)	Dra	w a fi	requen	cy his	tograi	n and	polyg	on.				106
	(c)	Wh	at is t	he freq	uenc	y of 3	heads	throw	n?				107
	(d)	Wh	at is t	he mos	st freq	uent r	esult?						
	(e)	Hov	v mar	y thro	ws sh	owed	at leas	st 4 he	ads?				
Q2.	Calc	ulate	the m	nean, m	nediar	ı, mod	e and	range	for ea	ach set	of sco	ores:	108, 109
	(a)	6	3	5	6	2	(b)	19	15	13	14	16	-
		8	4	6	7	3		17	12	14	13	18	
							-	12	14	15	13	14	
Q3.	Calc	ulate	the m	ean fo	r the	scores	in eac	h tabl	e to 2	d.p.:			110
	(a)	X		$\cdot f$			(b)	,	c	f			
		9	1	5				1	5	9			
		10		7 14				1 1	- 1	13 14		•	
		12		10				1		19			
		13		6				1	9	15			
Q4.	Com	plete	the ta	ble be	low a	nd find	d:						112, 113
2	Γ	x	f	fx	c.f	1		(a)	the	mean			
		12	3					(b)	the	mode			
		13	5	İ				(c)	the	mediai	1		
		14 15	12					(d)	the	range			

Totals:

(e)

Draw a cumulative

and ogive.

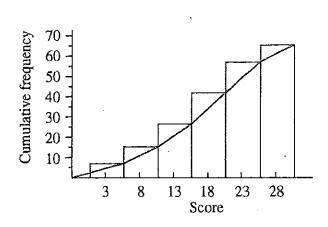
frequency histogram

LEVEL 2 — STATISTICS

Q1. Ten dice were tossed and the number of sixes showing was recorded for each toss:

3	3	0	1	3	4	4	2	6	5	2	9
2	5	4	2	0	3	5	8	4	3	5	4
6	3	5	3	4	2	6	5	1	2	7	1
4	7	1	3	2	5	0	6	6	1	3	3
1	4	3	0	1	2	3	3	1	5	6	5

- (a) Tabulate the data in a frequency distribution table.
- (b) Calculate the mean, mode, median and range.
- (c) How many tosses showed at least 5 sixes?
- (d) Draw a frequency histogram and polygon.
- (e) Draw a cumulative histogram and ogive.


Q2. A tree farmer measured the height of newly planted saplings to the nearest centimetre. The results are shown below.

24	26	22	19	24	15	25	31	28	16	30	34
18	31	32	36	27	33	30	16	29	23	23	20
23	23	17	32	28	30	21	17	25	37	31	16
22	16	27	22	35	20	18	31	24	30	27	39
38	21	20	17	15	19	30	26	17	24	32	23

- (a) By grouping the data into five equal class intervals, tabulate the data in a grouped frequency distribution table.
- (b) Calculate the mean height of the saplings.
- (c) Determine the modal class and the median class.
- (d) What percentage of saplings are above mean height?
- (e) Draw a cumulative histogram and ogive.

Q3. From the cumulative histogram to the right determine:

- (a) the median class.
- (b) the frequency of each class centre.
- (c) the modal class.
- (d) the mean (correct to 2 d.p.)

Q8. (a)
$$y = 3x - 9$$

(b)
$$y = -2x + 1$$

(c)
$$y = 5x + 20$$

(b)
$$y = -2x + 11$$
 (c) $y = 5x + 20$ (d) $y = -\frac{1}{2}x + \frac{1}{2}$

(e)
$$y = \frac{2}{3}x + 5\frac{2}{3}$$

Q9. (a) $y = 2x - 3$

(b)
$$y = -2x + 5$$
 (c) y

(c)
$$y = -4x + 8$$

(NOTE: Answers may also be written in general form)
(c)
$$y = -4x + 8$$
 (d) $y = 3x + 2$

(e)
$$y = -\frac{3}{2}x + 4$$

(e)
$$y = -\frac{3}{2}x + 4$$
 (f) $y = \frac{1}{2}x - 2\frac{1}{2}$

(NOTE: Answers may also be written in general form)

Q10.
$$2x - y + 1 = 0$$
 and $4x - 2y + 3 = 0$

Q11.
$$y = 4x - 3$$
 or $4x - y - 3 = 0$

Q12.
$$3y - x + 3 = 0$$
 and $6y - 2x + 4 = 0$

Q13.
$$y = -\frac{3}{2}x + 5$$
 or $3x + 2y - 10 = 0$

Q15. Points lie on line x - 2y - 6 = 0

Level 2 — Coordinate geometry

Q1. (a)
$$y = \frac{2}{3}x + 2$$

(b)
$$y = -\frac{1}{2}x - 1$$
 (c) $y = 4x - 2$

(c)
$$y = 4x - 2$$

$$Q2. \quad 3x - 2y = 0$$

Q3.
$$m = -4, n = -3$$

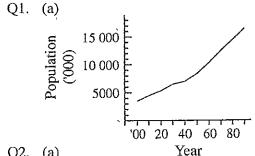
Q4.
$$\frac{\sqrt{117}}{2}$$
 units

Q5.
$$2x - 3y - 24 = 0$$

$$Q6. \quad x - y + a = 0$$

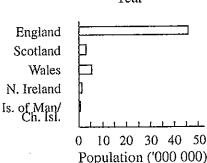
Q7.
$$2x - 5y + 39 = 0$$

Q8.
$$m_{\text{CA}} = \frac{1}{2}$$
, $m_{\text{CB}} = -2$: perpendicular. Area = 30 units² (NOTE: Can also use Pythagoras' Theorem)


Q9. AB = CD =
$$\sqrt{5}$$
 units; BC = AD = $\sqrt{17}$ units; $m_{AB} = m_{DC} = \frac{1}{2}$ \therefore AB || DC || $m_{BC} = m_{AD} = -\frac{1}{4}$ \therefore BC || AD

Q10. All sides are
$$5\sqrt{2}$$
 units; $m_{AB} = m_{CD} = \frac{1}{7}$.. AB || CD; $m_{BC} = m_{AD} = 7$.. BC || AD.

Q11.
$$y = 2x + 5$$


Q13.
$$12x + 18y + 5 = 0$$

Level 1 — Graphs

- 1960's (b)
- 96.4% (c)

Q2. (a)

- England 8.26 cm, Scotland 0.49 cm, Wales (b) 0.95 cm, N. Ireland 0.27 cm, Is. of Man/Ch. Isl. 0.03 cm. [Obviously a bar graph is not a good representation of the information as some of the figures are very small.]
- England 297°, Scotland 18°, Wales 34°, N. (c) Ireland 10°, Is. of Man/Ch. Isl. 1°.

Q3. (a) 19%

(b) 20%

(c) \$166.40

(d) Rent 115°, Elec./Water 47°, Groceries 14°, Loan 58°, Entertainment 58°, Savings 68°.

Q4. (a) \$4.00

(b) \$5.50

(c) less than 5 hours

(d) \$10

(b) 36 kg

Q5. (a) Sean (b) 11:45 a.m., 12:45 p.m. (c) 105 km (d) 20 km (e) Sean 320 km, Con 280 km

Q6. (a) 44 m

(c) 53 m

Q7. (a) (i) II (ii) III (iii) I

(b) III

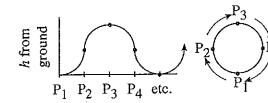
Level 2 — Graphs

Monthly 7°, Fortnightly 40°, Weekly 187°, Twice a week 29°, Three times/week Q1. (a) (i) 68°, Daily 22°, Other 7°

Monthly 4 mm, Fortnightly 2.2 cm, Weekly 10.4 cm, Twice a week 1.6 cm, Three (ii) times/week 3.8 cm, Daily 1.2 cm, Other 4 mm

(b) 65°

Q2. (a) Jung 7 a.m., Mandy 7:30 a.m.


(d) Jung 68 km/h, Mandy 72.7 km/h

(b) 10:37 a.m.

(c) 200 km

Q3. (a) A = III, B = II

Level 1 — Statistics

Q1. (a) 0 1 0 8 8 1 2 10 20 3 7 21 3 4 12 5 1 5 30 66

(c) 7

(d) 2 heads

(e) 4

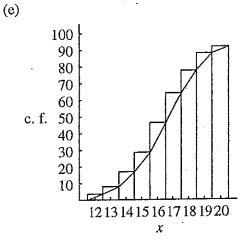
Q2. (a) 5, 5.5, 6, 6

(b) 14.6, 14, 14, 7

(b)

Q3. (a) 11.12

(b) 17.26


Q4.

х	f	fx	c.f.
12	3	36	3
13	5	65	8
14	9	126	17
15	12	180	29
16	18	288	47
17	17	289	64
18	14	252	78
19	10	190	88
20	4	80	92
•	92	1506	

(a) 16.37

(b) 16 (c) 16

(d) 8

