CALCULATOR ALLOWED

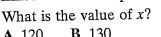
Advanced level questions

Mini Test 27: Angles

A regular octagon is cut into three pieces by drawing lines parallel to the top and bottom as shown in the diagram.

What is the value of x?

A polygon has two angles of 90° and its remaining angles are all 135°. What type of polygon is it?

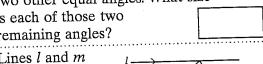

A pentagon

B hexagon

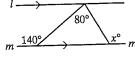
C octagon

D decagon

3 Lines l and m are parallel.



B 130 **A** 120 **D** 150 C 140



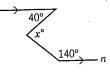
A polygon has three angles of 100° and two other equal angles. What size

is each of those two remaining angles?

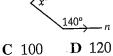
Lines l and mare parallel. What is the value of x?

C 140

B 120 **A** 100 The diagram shows a square, 6 an equilateral triangle and

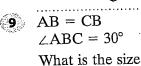

D 160

What is the value of x?



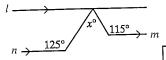
7 Lines m and n are parallel.

an octagon.



What is the value of x? **B** 90 **A** 80

What is the value of a?

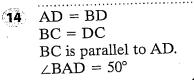


of $\angle BCD$?

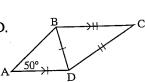
Lines l, m and n are all parallel.

What is the value of x?

The clock shows that it is seven o'clock. What is the size of the obtuse angle formed by the hands?



A trapezium is divided 12 into two parts. All the angles are marked. Which is not necessarily

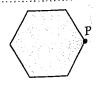


- $\mathbf{D} b + c + d$ $\mathbf{C} \ a + b + c$
- Each of the angles of a regular polygon is 140°.

How many sides does the polygon have? **D** 9 C 8 B 7


A 6

What is the size of $\angle BCD$?


D 80° **B** 30° C 50° A 20°

Lines l and m are parallel.

What is the value of x?

Which could not be placed 16 beside this regular hexagon to fill the space at P?

A two regular hexagons

B four equilateral triangles C two squares and an equilateral triangle

D one regular octagon and one square

1 45 2 B 3 D 4 120° 5 B 6 75 7 A 8 115 9 105° 10 60° 11 150° 12 C 13 D 14 A 15 60 16 D

1 Angle sum of an octagon = $(8-2) \times 180^{\circ}$ = $6 \times 180^{\circ}$ = 1080°

Each angle of a regular octagon = $1080^{\circ} \div 8$ = 135°

The quadrilateral formed inside the octagon is a rectangle.

Each angle of a rectangle = 90°

So
$$x = 135 - 90$$

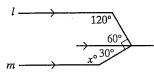
= 45

2 Try each option:

Angle sum of a pentagon =
$$(5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ}$
= 540°

If there were two angles of 90° and three of 135°, angle sum = $2 \times 90^{\circ} + 3 \times 135^{\circ}$ = $180^{\circ} + 405^{\circ}$ = 585°


So the polygon is not a pentagon.

Angle sum of a hexagon =
$$(6 - 2) \times 180^{\circ}$$

= $4 \times 180^{\circ}$
= 720°

If there were two angles of 90° and four of 135°, angle sum = $2 \times 90^{\circ} + 4 \times 135^{\circ}$ = $180^{\circ} + 540^{\circ}$ = 720°

So the polygon is a hexagon.

3 Draw a line through the right angle, parallel to both l and m.

The angle above the line, co-interior to the angle of 120° must be 60° .

[Co-interior angles, formed by parallel lines, add to 180°.]

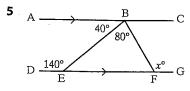
So the angle below the line is $90^{\circ} - 60^{\circ}$ or 30° .

Now
$$x + 30 = 180$$
 (co-interior angles,
parallel lines)
 $x = 180 - 30$
= 150

4 The polygon has five angles so it is a pentagon.

Angle sum of a pentagon =
$$(5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ}$
= 540°


Now there are three angles of 100°.

Sum of 3 angles =
$$3 \times 100^{\circ}$$

= 300°

Sum of remaining angles = $540^{\circ} - 300^{\circ}$ = 240°

But those two angles are equal.

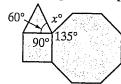
Each angle =
$$240^{\circ} \div 2$$

= 120°

$$\angle ABE + \angle BED = 180^{\circ}$$
 (co-interior angles, parallel lines)

So
$$\angle ABE = 40^{\circ}$$

 $\angle ABF = 40^{\circ} + 80^{\circ}$
 $= 120^{\circ}$
 $\angle ABF = \angle BFG$ (alternate angles, parallel lines)

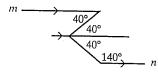

[If you didn't know that the lines were parallel you could still find the answer. The angle beside the one of 140° on the straight line must be 40° and then, because it is the exterior angle of the triangle, x = 40 + 80.]

So x = 120

Angle sum of an octagon =
$$(8-2) \times 180^{\circ}$$

= $6 \times 180^{\circ}$
= 1080°

Each angle of a regular octagon = $1080^{\circ} \div 8$ = 135°


Each angle of an equilateral triangle is 60°. Each angle of a square is 90°.

Angles at a point add to 360°.

So
$$x + 135 + 90 + 60 = 360$$

 $x + 285 = 360$
 $x = 360 - 285$
 $x = 75$

7 Draw a line through the unknown angle, parallel to both m and n.

Because alternate angles formed by parallel lines are equal, the top part of the unknown angle is 40°.

Because co-interior angles formed by parallel lines add to 180°, the bottom part of the unknown angle is 40°.

So
$$x = 40 + 40$$

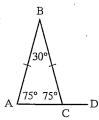
= 80

8 The shape is a pentagon.

Angle sum of a pentagon =
$$(5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ}$

 $= 540^{\circ}$

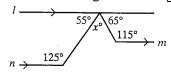

So
$$a + 85 + 135 + 95 + 110 = 540$$

 $a + 425 = 540$
 $a = 540 - 425$
 $= 115$

9 $\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$ (angle sum of a triangle)

Now
$$\angle ABC = 30^{\circ}$$
,
so $\angle BAC + \angle BCA = 150^{\circ}$

But $\angle BAC = \angle BCA$ (angles opposite equal sides in an isosceles triangle)


So
$$\angle BCA = 150^{\circ} \div 2$$

= 75°

$$\angle BCD + \angle BCA = 180^{\circ}$$
 (angles in a straight line)

So
$$\angle BCD = 180^{\circ} - 75^{\circ}$$

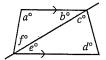
= 105°

10 Because co-interior angles formed by parallel lines add to 180°, the angle on the left at the top is 55°, and the angle on the right is 65°.

Now angles in a straight line add to 180°.

So
$$x + 55 + 65 = 180$$

 $x + 120 = 180$
 $x = 180 - 120$
 $= 60$


11 A clock face is divided into 12 parts. So each part is $360^{\circ} \div 12 = 30^{\circ}$

There are five parts in the obtuse angle between the hands at seven o'clock.

Angle =
$$5 \times 30^{\circ}$$

= 150°

12 Consider the options:

a + b + f = 180 (angle sum of a triangle)

$$a + f + e = 180$$
 (co-interior angles, parallel lines)

a + b + c is not necessarily equal to 180.

$$b + c + d = 180$$
 (co-interior angles, parallel lines)

The expression that is not necessarily equal to 180 is a + b + c.

[If the other pair of sides of the trapezium were parallel (i.e. the trapezium was in fact a parallelogram) then a + b + c would equal 180. If those sides are not parallel, then a + b + c would not equal 180.]

13 Consider the options.

If the polygon had 6 sides then:

angle sum =
$$(6 - 2) \times 180^{\circ}$$

= $4 \times 180^{\circ}$
= 720°

Each angle =
$$720^{\circ} \div 6$$

= 120°

So the polygon does not have 6 sides.

If the polygon had 7 sides then:

angle sum =
$$(7 - 2) \times 180^{\circ}$$

= $5 \times 180^{\circ}$
= 900°

Each angle =
$$900^{\circ} \div 7$$

= $128.57...^{\circ}$

So the polygon does not have 7 sides.

If the polygon had 8 sides then:

angle sum =
$$(8 - 2) \times 180^{\circ}$$

= $6 \times 180^{\circ}$
= 1080°

Each angle =
$$1080^{\circ} \div 8$$

= 135°

So the polygon does not have 8 sides.

If the polygon had 9 sides then:

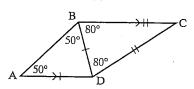
angle sum =
$$(9 - 2) \times 180^{\circ}$$

= $7 \times 180^{\circ}$
= 1260°

Each angle =
$$1260^{\circ} \div 9$$

= 140°

So the polygon does have 9 sides.


14 $\angle ABD = \angle BAD$ (opposite equal sides, isosceles triangle)

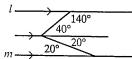
So
$$\angle ABD = 50^{\circ}$$

 $\angle ABC + \angle BAD = 180^{\circ}$ (co-interior angles, parallel lines)

So
$$\angle ABC = 130^{\circ}$$

 $\angle CBD = 130^{\circ} - 50^{\circ}$
= 80°

 \angle CDB = \angle CBD (angles opposite equal sides, isosceles triangle)

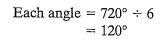

So
$$\angle$$
CDB = 80°

$$\angle CBD + \angle CDB + \angle BCD = 180^{\circ}$$
 (angle sum of a triangle)

$$80^{\circ} + 80^{\circ} + \angle BCD = 180^{\circ}$$

 $\angle BCD = 180^{\circ} - 160^{\circ}$
 $= 20^{\circ}$

15 Draw a line through the unknown angle, parallel to both l and m.



Because co-interior angles formed by parallel lines add to 180°, the top part of the unknown angle is 40°.

Because alternate angles formed by parallel lines are equal, the bottom part of the unknown angle is 20°.

So
$$x = 40 + 20$$

= 60

16 Angle sum of a hexagon = $(6 - 2) \times 180^{\circ}$ = $4 \times 180^{\circ}$ = 720°

Now angles at a point add to 360°.

Remaining angle =
$$360^{\circ} - 120^{\circ}$$

= 240°

Now try the options.

Two regular hexagons:

$$2 \times 120^{\circ} = 240^{\circ}$$

So two regular hexagons could fill the space.

Four equilateral triangles:

Each angle of an equilateral triangle is 60°.

$$4 \times 60^{\circ} = 240^{\circ}$$

So four equilateral triangles could fill the space.

Two squares and an equilateral triangle:

Each angle of a square is 90°

$$2 \times 90^{\circ} + 60^{\circ} = 180^{\circ} + 60^{\circ}$$

= 240°

So two squares and an equilateral triangle could fill the space.

One regular octagon and one square:

Angle sum of an octagon =
$$(8-2) \times 180^{\circ}$$

= $6 \times 180^{\circ}$
= 1080°

Each angle of a regular octagon = $1080^{\circ} \div 8$ = 135°

$$135^{\circ} + 90^{\circ} = 225^{\circ}$$

So a regular octagon and a square will not fill the space.