Topic 8: Exercises on the Ellipse <u>Level 1</u>

1. For the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ find (a) the eccentricity, (b) the coordinates of the foci, (c) the equations of the directrices. Sketch the ellipse.

(a)
$$\frac{3}{5}$$
; (b) (±3,0); (c) $x = \pm \frac{25}{3}$

2. For the ellipse $\frac{x^2}{3} + \frac{y^2}{2} = 1$ find (a) the eccentricity, (b) the coordinates of the foci, (c) the equations of the directrices. Sketch the ellipse.

(a)
$$\frac{1}{\sqrt{3}}$$
; (b) (±1,0); (c) $x = \pm 3$.

3. The ellipse has eccentricity $\frac{4}{5}$ and foci (-4,0) and (4,0). Find the equation of this ellipse.

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

4. A variable point P(x, y) moves so that its distance from (1,0) is one-third its distance from x = 9. Find the locus of P.

$$\frac{x^2}{9} + \frac{y^2}{8} = 1$$

5. An ellipse has its center at the origin and its foci on the x-axis. The distance between the foci is 4 units and the distance between the directrices is 16 units. Find the equation of the ellipse.

$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

6. A point P lies on the ellipse $\frac{x^2}{9} + \frac{y^2}{8} = 1$ with foci S and S'. Find PS' if PS = 2.

$$PS'=4$$

7. Find the parametric equation of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

(a)
$$x = 4\cos\theta$$
, $y = 3\sin\theta$, $-\pi < \theta \le \pi$

8. Find the Cartesian equation of the ellipse $x = 3\cos\theta$, $y = 2\sin\theta$;

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

9. The points $P(a\cos\theta, b\sin\theta)$ and $Q[a\cos(\pi+\theta), b\sin(\pi+\theta)]$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Show that the chord PQ passes through (0,0).

10. The points $P(a\cos\theta, b\sin\theta)$ and $Q[a\cos(-\theta), b\sin(-\theta)]$ are the extremities of the latus rectum x = ae of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Show that (a) $\cos\theta = e$; (b) PQ has length $2\frac{b^2}{a}$.

11. The points $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the chord PQ subtends a right angle at (0,0). Show that $\tan\theta\tan\phi = -\frac{a^2}{b^2}$.

12. Find the equations of the tangent and the normal to the ellipse $\frac{x^2}{15} + \frac{y^2}{10} = 1$ at the point (3,2).

x + y = 5; x - y = 1

13. Find the equations of the tangent and the normal to the ellipse $x = 6\cos\theta$, $y = 2\sin\theta$ at the point where $\theta = \frac{\pi}{6}$.

$$\sqrt{3}x + 3y = 12$$
; $3x - \sqrt{3}y = 8\sqrt{3}$

14. Find the equation of the chord of contact of tangents from the point (5,4) to the ellipse $\frac{x^2}{15} + \frac{y^2}{10} = 1.$

$$5x + 6y = 15$$

15. The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The normal at P cuts the x-axis at X and the y-axis at Y. Show that $\frac{PX}{PY} = \frac{b^2}{a^2}$.