Topic 9: Exercises on the Hyperbola Level 1

- 1. For the hyperbola $\frac{x^2}{9} \frac{y^2}{16} = 1$ find (a) the eccentricity, (b) the coordinates of the foci,
- (c) the equations of the directrices, (d) the equation of the asymptotes. Sketch the hyperbola.

(a)
$$\frac{5}{3}$$
; (b) $(\pm 5,0)$; (c) $x = \pm \frac{9}{5}$; (d) $y = \pm \frac{4}{3}x$

- 2. For the hyperbola $\frac{x^2}{2} \frac{y^2}{4} = 1$ find (a) the eccentricity, (b) the coordinates of the foci,
- (c) the equations of the directrices, (d) the equation of the asymptotes. Sketch the hyperbola.

(a)
$$\sqrt{3}$$
; (b) $(\pm\sqrt{6},0)$; (c) $x = \pm\sqrt{\frac{2}{3}}$; (d) $y = \pm\sqrt{2}x$

3. The hyperbola has eccentricity $\frac{3}{2}$ and directrices x = -4 and x = 4. Find the equation of this hyperbola.

$$\frac{x^2}{36} - \frac{y^2}{45} = 1$$

4. A variable point P(x, y) moves so that its distance from (9,0) is three times its distance from x = 1. Find the locus of P.

$$\frac{x^2}{9} - \frac{y^2}{72} = 1$$

5. A point P lies on the hyperbola $\frac{x^2}{9} - \frac{y^2}{72} = 1$ with foci S and S'. Find PS' if PS = 2.

$$PS' = 8$$

6. Find the parametric equation of the hyperbola $\frac{x^2}{16} - \frac{y^2}{25} = 1$.

$$x = 4 \sec \theta$$
, $y = 5 \tan \theta$, $-\pi < \theta \le \pi$, $\theta \ne \pm \frac{\pi}{2}$

7. Find the Cartesian equation of the hyperbola $x = 3 \sec \theta$, $y = 4 \tan \theta$.

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

8. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and the chord PQ subtends a right angle at (0,0). Show that $\sin \theta \sin \phi = -\frac{a^2}{b^2}$.

9. Find the equations of the tangent and the normal to the hyperbola $\frac{x^2}{6} - \frac{y^2}{8} = 1$ at the point (3,2).

$$2x - y = 4$$
; $x + 2y = 7$

10. Find the equations of the tangent and the normal to the hyperbola $x = 2 \sec \theta$, $y = 3 \tan \theta$ at the point where $\theta = \frac{\pi}{3}$.

$$3x - \sqrt{3}y = 3$$
; $x + \sqrt{3}y = 13$

11. Find the equation of the chord of contact of tangents from the point (1,2) to the hyperbola $\frac{x^2}{6} - \frac{y^2}{8} = 1.$

$$2x-3y=12$$

12. S is a focus of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangent at (a,0) meets an asymptote at the point T. Show that OT = OS.

13. Find the equation of the chord of contact of the tangents from the point (1,3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$. Hence find the coordinates of their points of contact and the equations of these tangents.

$$5x-4y=20$$
; $y=-4x+7$, $\left(\frac{16}{7},-\frac{15}{7}\right)$; $y=2x+1$, $(-8,-15)$

14. Show that the chord of contact of the tangents from a point on a directrix of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a focal chord through the corresponding focus.