<u>Topic 9: Exercises on the Hyperbola</u> <u>Level 3</u>

1. A variable point P(x, y) moves so that its distance from (0,4) is two times its distance from y = 1. Find the locus of P.

$$\frac{y^2}{4} - \frac{x^2}{12} = 1$$

2. The asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are inclined to each other at an angle α .

Show that
$$\tan \alpha = \frac{2ab}{\left|a^2 - b^2\right|}$$
.

3. A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with foci S(a l, 0) and S'(-a l, 0). (a) Show that $PS = a|e \sec \theta - 1|$ and $PS' = a|e \sec \theta + 1|$. (b) Deduce that |PS - PS'| = 2a.

4. Points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. (a) Use the result that the chord PQ has equation $\frac{x}{a} \cos \left(\frac{\theta - \phi}{2} \right) - \frac{y}{b} \sin \left(\frac{\theta + \phi}{2} \right) = \cos \left(\frac{\theta + \phi}{2} \right)$ to show that if PQ is a local chord, then $\tan \frac{\phi}{2} \tan \frac{\phi}{2}$ takes one of the values $\frac{1 - e}{1 + e}$ or $\frac{1 + e}{1 - e}$. (b) The point $P(2\sqrt{3}, 3\sqrt{3})$ is one extremity of a focus chord on the hyperbola $\frac{x^2}{3} - \frac{y^2}{9} = 1$. Find the coordinates of the other extremity Q.

$$(2\sqrt{3}, -3\sqrt{3})$$
 or $\left(-\frac{14\sqrt{3}}{13}, \frac{9\sqrt{3}}{13}\right)$

5. A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The line through P perpendicular to the x-axis meets an asymptote at Q and the normal at P meets the x-axis at N. Show that ON is perpendicular to the asymptote.

6. The point $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is joined to the vertices A(a,0) and A'(-a,0). The lines AP and A'P meet he asymptote $y = \frac{b}{a}x$ at Q and R respectively. (i) Find the coordinates of Q and R. (ii) Hence find the length QR, showing that it is independent of θ , and show that the area of triangle PQR is $\frac{1}{2}|ab(\sec \theta - \tan \theta)|$ square units.

(i)
$$\left(\frac{a\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}, \frac{b\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right), \left(\frac{a\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}, \frac{b\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right); (ii) \sqrt{a^2+b^2}$$

7. Find the equation of the tangent and normal to (a) the hyperbola $\frac{x^2}{12} - \frac{y^2}{27} = 1$ at the point (4,3); (b) the hyperbola $x = 3 \sec \theta$, $y = 6 \tan \theta$ at the point where $\theta = \frac{\pi}{6}$.

(a)
$$3x - y = 9$$
, $x + 3y = 13$; (b) $4x - y = 6\sqrt{3}$, $x + 4y = 10\sqrt{3}$

8. The point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The points T and T' are the feet of the perpendiculars from the foci S and S' respectively to this tangent. Show that $ST \cdot S'T' = b^2$.

9. Show that if y = mx + k is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $m^2 a^2 - b^2 = k^2$.

Hence find the equation of the tangents from the point (1,3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ and the coordinates of their points of contact.

$$y = 2x + 1$$
, $(-8,-15)$; $y = -4x + 7$, $\left(\frac{16}{7}, -\frac{15}{7}\right)$