Topic 10: Exercises on the Rectangular Hyperbola Level 2

1. For the rectangular hyperbola xy = 16, find (a) the eccentricity; (b) the coordinates of the foci; (c) the equations of the directrices; (d) the equations of the asymptotes. Sketch the hyperbola.

(a)
$$\sqrt{2}$$
; (b) $(4\sqrt{2}, 4\sqrt{2})$, $(-4\sqrt{2}, -4\sqrt{2})$; (c) $x + y = \pm 4\sqrt{2}$; (d) $x = 0$, $y = 0$

2. Find the parametric equation of the rectangular hyperbola xy = 25.

$$x = 5t, \ y = \frac{5}{t}$$

3. Find the Cartesian equation of the rectangular hyperbola $x = 3t, y = \frac{3}{t}$.

xy = 9

4. Find the equations of the tangent and the normal to the rectangular hyperbola xy = 12 at the point (-3,-4).

$$4x + 3y = -24, \ 3x - 4y = 7$$

5. Find the equations of the tangent and the normal to the rectangular hyperbola $x = 3t, y = \frac{3}{t}$ at the point t = -1.

$$x + y = -6$$
, $x - y = 0$

6. Find the equation of the chord of contact of tangents from the point (1,-2) to xy = 6.

7. Find the equation of the chord of contact of tangents from the point (-1,-3) to the rectangular hyperbola xy = 4. Hence find the coordinates of their points of contact and the equations of these tangents.

$$3x + y = -8$$
, $(-2,-2)$, $\left(-\frac{2}{3},-6\right)$

8. The points $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$ lie on the rectangular hyperbola $xy=c^2$. The chord PQ subtends a right angle at the another point $P\left(cr,\frac{c}{r}\right)$ on the hyperbola. Show that the normal at P is parallel to PQ.

9. The point $P\left(ct, \frac{c}{t}\right)$, where $t \neq 1$ lies on the rectangular hyperbola $xy = c^2$. The tangent and the normal at P meet the line y = x at T and N respectively. Show that $OT \cdot ON = 4c^2$.

10. On the rectangular hyperbola $xy = c^2$ there are variable points P and Q. The tangents at P and Q meet at R. Find the equation of the locus of R if PQ passes through the point (a,0).

$$y = \frac{2c^2}{a}$$

11. The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$. The tangent at P cuts the x-axis at X and the y-axis at Y. Show that PX = PY.