PAST EXAMINATION QUESTIONS Tangents and Normals

- 1. Find the co-ordinates of the point of the curve $y = x^3 + x^2 3x + 1$ at which the tangent is parallel to the tangent at $(\frac{1}{3}, \frac{4}{27})$. (N61/P1/3i)
- 2. Prove that the curves $y^2 = 16x$ and $y = x^2 + 3$ touch at the point (1, 4). Prove also that the common tangent at this point forms with the axes a triangle of unit area. (J67/P2/2)
- 3. Given that the curve $y = ax^2 + bx + c$ cuts the x-axis at the points, P, (1, 0) and Q, (2, 0), and cuts the y-axis at the point R, (0, -4), find the numerical values of a, b and c. Prove that the tangent to the curve at P is parallel to the line QR. (N69/P2/1)
- 4. The straight line x = 3 intersects the circle $x^2 + y^2 8x 10y 9 = 0$ at the points P and Q. Calculate (a) the co-ordinates of P and Q, (b) the equations of the tangents at P and Q, (c) the co-ordinates of the point of intersection of the tangents. (J70/P2/8)
- 5. The line $y = \frac{1}{2}$ meets the portion of the curve $y = \sin 2x$ for which $0 < x < \frac{1}{2}\pi$ in points A and B. Calculate the gradients of the tangents to the curve at A and B. Show that if these tangents meet at C then ABC is an equilateral triangle. (N74/P1/15)
- 6. P is the point (4, 7) on the curve $y = x^2 6x + 15$. Find the gradient of the curve at P, and the equation of the tangent at this point. The tangent at another point Q is perpendicular to the tangent at P. Calculate the x co-ordinate of Q. (N74/P2/8)
- 7. Find the equation of the tangent to the curve $y = x^2 + c$ at the point where x = k. Deduce the relation between k and c if this tangent passes through the origin. For the case when c = 4 find the equations of the tangents to the curve which pass through the origin. (N75/P2/16a)
- 8. Find the equation of the normal to the curve $y = \frac{x-2}{2x+1}$ at the point where the curve crosses the x-axis. (J76/P2/15)
- 9. Find the gradient of the normal to the curve $y = x^2 \sqrt{1+4x}$ at the point (2, 12). (N76/P1/16b)
- 10. A curve is defined by $y = x^3 12x$. Find the equation of the tangent to the curve at the point (3, -9) (N76/P2/1ii)

3.
$$a = -2$$
, $b = 6$, $c = -4$

4. (a)
$$(3, 12)(3, -2)$$

4. (a)
$$(3, 12)(3, -2)$$

(b) $x - 7y + 81 = 0$,

$$x + 7y + 11 = 0$$

5.
$$\pm \sqrt{3}$$

6. 2;
$$y = 2x - 1$$
; $2\frac{3}{4}$

7.
$$y = 2kx - k^2 + c$$
, $c = k^2$, $y = \pm 4x$

8.
$$y = -5x + 10$$

9. $-\frac{3}{44}$

9.
$$-\frac{3}{44}$$

10.
$$y = 15x - 54$$