Past Examination Questions Tangents and Normals

- 1. Show that the tangent to the curve $y = (x+k)^2$ at the point where x = 2k is $y + 3k^2 = 6kx$. This tangent meets the x-axis at P and the y-axis at Q. The mid-point of PQ is M. Find the co-ordinates of M in terms of k and hence deduce the equation of the locus of M as k varies. (J77/P2/14)
- 2. Find the equation of the tangent to the curve $y = \frac{4}{x^3}$ at the point where x = 2. This tangent meets the axes at P and Q, and R is the mid-point of PQ. Find the co-ordinates of R and determine whether or not R lies on the curve $y = \frac{4}{x^3}$. (N77/P1/6)
- 3. Given the curve $y = \frac{18}{x}$, find the equation of the normal at the point (6, 3). (N77/P2/14i)
- Find the equation of the tangent to the curve $y = x^3 7x^2 + 14x 8$ at the point where x = 1. Find the x co-ordinate of the point at which the tangent is parallel to the tangent at x = 1. (J78/P2/6)
- 5. Given the curve $y = \frac{5}{3}x + kx^2 \frac{8}{9}x^3$, calculate the possible values of k such that the tangents at the points with x co-ordinates 1 and $-\frac{1}{2}$ respectively are perpendicular. (N79/P2/2)
- 6. Find the equation of the tangent to the curve $y = 3x^2$ at the point where x = h. If this tangent meets the y-axis at P find, in terms of h, the y co-ordinate of P. (J80/P2/16a)
- 7. Find (i) the equation of the tangent to the curve $y = x \frac{2}{x}$ at the point (2, 1), (ii) the area of the triangle enclosed by this tangent and the co-ordinate axes. (N80/P2/2)
- **3.** Show that the equation of the tangent to the curve $y = (x+2a)^3$ at the point where $y = a^3$ is $y = 3a^2x + 4a^3$. This tangent meets the x-axis at P and the y-axis at Q. Find the co-ordinates of M, the midpoint of PQ, in terms of a. Deduce that, whatever the value of a, M lies on the curve $4y + 27x^3 = 0$ (J81/P2/16)
- **9.** The equation of a curve is $y = 2x^3 7x^2 + 15$. Write down an expression for $\frac{dy}{dx}$ and hence find the equation of the tangent to the curve at (2, 3). (N81/P1/3i)
- Find, in terms of h, the equation of the tangent to the curve $y = x^2$ at the point P, whose x co-ordinate is h. This tangent intersects the x-axis at A and the y-axis at B. The midpoint of AB is Q. (i) Find the co-ordinates of Q in terms of h. (ii) Find the equation of the locus of Q as h varies. (iii) Given that h = 4, find the co-ordinates of the point at which PQ produced meets the locus again. (J82/P2/16)

1.
$$(\frac{k}{4}, -\frac{3k^2}{2}), y = -24x^2$$

2.
$$4y + 3x = 8$$
; $(1\frac{1}{3}, 1)$; no

3.
$$y = 2x - 9$$

4.
$$y = 3x - 3, 3\frac{2}{3}$$

5. $0, \frac{3}{2}$

$$\mathbf{\varsigma}$$
. 0, $\frac{3}{2}$

6.
$$y = 6hx - 3h^2, -3h^2$$

7. (i)
$$2y = 3x - 4$$

(ii)
$$\frac{4}{3}$$
 square units

$$Q. \left(-\frac{2a}{3}, 2a^3\right)$$

9.
$$6x^2 - 14x$$
; $y + 4x = 11$

$$y = 2hx - h^2$$

(i)
$$(\frac{h}{4}, \frac{h^2}{2})$$

(ii)
$$y = -8x^2$$