Topic 19A: Exercises on Harder 3 Unit Induction Level 1, Part 2

1. Show that for $n \ge 4$, $n! \ge 2^n$.

2. Show that for $n \ge 2$, $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 - \frac{1}{n}$.

3. If $u_n = 5^n + 12n - 1$, show that $u_{n+1} = 5u_n - 48n + 16$ and hence show that u_n is divisible by 16 for $n \ge 1$.

4. If $u_n = 9^{n+1} - 8n - 9$, show that $u_{n+1} = 9u_n + 64n + 64$, and hence show that u_n is divisible by 64 for $n \ge 1$.

5. If $u_n = 2^{n+2} + 3^{2n+1}$, show that $u_{n+1} = 2u_n + 7 \cdot 3^{2n+1}$, and hence show that u_n is divisible by 7 for $n \ge 1$.

6. If $u_1 = 5$, $u_2 = 11$ and $u_n = 4u_{n-1} - 3u_{n-2}$ for $n \ge 3$, show that $u_n = 2 + 3^n$ for $n \ge 1$.

7. If $u_1 = 8$, $u_2 = 20$ and $u_n = 4u_{n-1} - 4u_{n-2}$ for $n \ge 3$, show that $u_n = (n+3)2^n$ for $n \ge 1$.

- 8. If $u_1 = 1$ and $u_n = \sqrt{2u_{n-1}}$ for $n \ge 2$ (a) show that $u_n < 2$ for $n \ge 1$,
 (b) deduce that $u_{n+1} > u_n$ for $n \ge 1$.