<u>Topic 19A: Exercises on Harder 3 Unit Induction</u> <u>Level 3, Part 1</u>

1. Show that for
$$n \ge 1$$
, $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}$.

2. Show that for $n \ge 1$, $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$.

3. Show that for
$$n \ge 1$$
, $1 + \frac{x}{1!} + \frac{x(x+1)}{2!} + \dots + \frac{x(x+1)\dots(x+n-1)}{n!} = \frac{(x+1)(x+2)\dots(x+n)}{n!}$.

4. Show that for $n \ge 1$, $2 \cdot 1! + 5 \cdot 2! + 10 \cdot 3! + ... + (n^2 + 1)n! = n(n + 1)!$.

5. Show that $(1+x)^n - nx - 1$ is divisible by x^2 for $n \ge 2$.

6. Show that for $n \ge 10$, $2^n > n^3$.