$\frac{\textbf{Topic 5: Exercises on Polynomials II}}{\textbf{Level 2}}$

1. Find the roots of P(x) = 0 over (i) the rational numbers, (ii) the real numbers, (iii) the complex numbers, if

(a)
$$P(x) = x^4 - 5x^2 + 6$$

i) no roots, ii, iii) $\pm \sqrt{2}, \pm \sqrt{3}$

(b)
$$P(x) = x^4 - x^2 - 2$$
;

i) no roots, ii) $\pm \sqrt{2}$, iii) $\pm \sqrt{2}$, $\pm i$

(c)
$$P(x) = x^4 + 5x^4 + 4$$
.

2. Divide $P(x) = x^3 - 3x^2 + 4x - 2$ by x + 1 and verify that the remainder is P(-1).

$$P(x) = (x+1)(x^2-4x+8)-10$$
; $P(-1) = -10$

3. Divide $P(x) = x^3 - x^2 + x - 1$ by x - i and verify that the remainder is P(i).

$$P(x) = (x-i)\{x^2 + (i-1)x - i\}; P(i) = 0$$

4. Express $P(x) = x^3 - 2x^2 + 4x - 8$ as a product of irreducible factors over (i) **Q**, (ii) **R**, (iii) **C**.

(i, ii)
$$P(x) = (x-2)(x^2+4)$$
, (iii) $P(x) = (x-2)(x-2i)(x+2i)$

5. Express $P(x) = x^4 - x^3 - 5x^2 - x - 6$ as a product of irreducible factors over (i) **Q**, (ii) **R**, (iii) **C**.

(i, ii)
$$P(x) = (x+2)(x-3)(x^2+1)$$
; (iii) $P(x) = (x+2)(x+3)(x-i)(x+i)$

6. Find P(x), given that P(x) is monic, of degree 4, with -1 as a single zero and 3 as a zero of multiplicity 3.

$$P(x) = x^4 - 8x^3 + 18x^2 - 27$$

7. If $P(x) = 4x^3 + 15x^2 + 12x - 4$ has a double zero, find all the zeros and factorise P(x) fully over the real numbers.

$$P(x) = (x+2)^2 (4x-1)$$

8. If $P(x) = x^3 - 6x^2 + 9x + c$ for some real number c, find the values of x for which P(x)' = 0. Hence find the values of c for which the equation P(x) = 0 has a repeated root.

$$x = 1$$
, $x = 3$; $c = -4$, $c = 0$.

9. If $P(x) = x^4 - 3x^3 - 6x^2 + 28x - 24$ has a triple zero, find all the zeros and factorise P(x) over the real numbers.

$$P(x) = (x-2)^3(x+3)$$

10. If $P(x) = x^4 + 2x^3 - 12x^2 - 40x + c$ has a triple zero, find c and factorise P(x) over the real numbers.

$$c = -32$$
; $P(x) = (x+2)^3(x-4)$

11. If $P(x) = 1 - x - \frac{x^2}{2!} - \dots + (-1)^n \frac{x^n}{n!}$, show that P(x) has no multiple zero for $n \ge 2$.

12. Given that P(x) has a rational zero, find this zero and factorise P(x) over the real numbers if (a) $P(x) = 2x^3 - 3x^2 + 2x - 3$, (b) $P(x) = 2x^3 + x^2 - 4x - 2$.

(a)
$$x = \frac{3}{2}$$
; $P(x) = (2x - 3)(x^2 + 1)$; (b) $x = -\frac{1}{2}$; $P(x) = (2x + 1)(x - \sqrt{2})(x + \sqrt{2})$

13. If $P(x) = 3x^4 - 4x^3 - 14x^2 - 4x + 3$, solve the equation P(x) = 0 over **C** and factor P(x) fully over **R**.

$$x = -1, -1, 1/3, 3; P(x) = (3x-1)(x-3)(x+1)^2$$