

HSC Trial Examination 2012

Mathematics Extension 1

This paper must be kept under strict security and may only be used on or after the morning of Thursday 9 August, 2012 as specified in the Neap Examination Timetable.

General Instructions

Reading time - 5 minutes Working time - 2 hours Write using black or blue pen Board-approved calculators may be used A table of standard integrals is provided at the back of this paper

All necessary working should be shown in every question

Section I - 10 marks

10 multiple-choice questions

Section II - 60 marks

4 short-answer questions

Total marks - 70

Attempt questions 1-14

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2012 HSC Mathematics Extension 1 Examination.

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party Inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright © 2012 Neap ANN 49 910 900 643 PO Box 214 St Leonards NSW 1590 Tel: (02) 9438 1386 Fax: (02) 9438 1385

HSC Mathematics Extension 1 Trial Examination

Section I - 10 marks Attempt Questions 1-10 All questions are of equal value

Use the multiple-choice answer sheet for Questions 1-10.

- Which of the following is the solution of $\frac{x^2}{x^2-9} > 0$?

 - (B) x < -3
 - (C) -3 < x < 3
 - (D) x < -3, x > 3
- What is the exact value of $\csc\left(-\frac{7\pi}{4}\right)$?

 - (D) $-\sqrt{2}$
- What is the domain and range of $y = 2\sin^{-1}\left(\frac{x}{2}\right)$?
 - (A) $x \le |3|, y \le |\pi|$
 - (B) $-1 \le x \le 1, -3 \le y \le 3$
 - (C) $-1 \le x \le 1, -\pi \le y \le \pi$
 - (D) $-3 \le x \le 3, -2 \le y \le 2$
- Which of the following functions is the inverse function of $f(x) = 3 \frac{1}{2x+6}$? (A) $f^{-1}(x) = 6 \frac{2}{x+4}$

Copyright @ 2012 Neap

- (B) $f^{-1}(x) = 6 \frac{1}{6 2x}$
- (C) $f^{-1}(x) = -3 \frac{1}{2x 6}$
- (D) $f^{-1}(x) = 3 \frac{1}{6 2x}$

- 5. Using a suitable substitution, $\int (\sin x \cdot \cos^4 x) dx$ can be written as

 - (D) $\int_{0}^{1} u(1-u^2)^{\frac{1}{2}} du$
- 6. If $y = \sin^{-1}\left(\frac{a}{x}\right)$, then $\frac{dy}{dx}$ equals
 - $(A) \quad \frac{-a}{x^2 \sqrt{x^2 a^2}}$

 - (B) $\frac{x}{\sqrt{x^2 a^2}}$ (C) $\frac{-x}{\sqrt{x^2 a^2}}$ (D) $\frac{-a}{x\sqrt{x^2 a^2}}$
- 7. A solution to the integral $\int \frac{1}{c(a-bx)} dx$, given that a, b and c are constants, could be
 - (A) $-\frac{1}{bc}\log_e(a-bx)$
 - (B) $\frac{1}{c}\log_e(a-bx)$
 - (C) $\log_e(a-bx)^{bc}$
 - (D) $\log_e c(a-bx)$
- 8. If $\sin x = \frac{3}{5}$, $\frac{\pi}{2} \le x \le \pi$, then $\tan 2x$ would be equal to

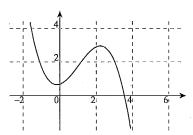
- 9. Given $f(x) = -x^2 + 2x + 3$, the graph of $y = \frac{1}{f(x)}$ has
 - (A) asymptotes at x = 1 and x = -3.
 - (B) x-intercepts at x = -1 and x = 3.
 - (C) asymptotes at x = -1 and x = 3.
 - (D) an x-intercept at $x = -\frac{1}{3}$.
- 10. What ratio does the point P(10, 11) divide the interval AB, where A(-2, 3) and B(7, 9)?
 - (A) 1:4
 - (B) 4:-1
 - (C) 1:-4
 - (D) 4:1

HSC Mathematics Extension 1 Trial Examination

Marks

Section II – 60 marks Attempt Questions 11–14

All questions are of equal value


Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) There are five women and six men in a group. From this group, a committee of four is to be chosen.
 - (i) How many different ways can a committee be formed that contain three women and one man?
 - (ii) A particular man and a particular woman are to be on the committee.

 What is the probability that this committee is formed?
- (b) The function $f(x) = x^2 e^{(x-1)} + 1$ has one root between x = 3 and x = 4.
 - (i) Show that the root lies between x = 3 and x = 4.
 - (ii) Hence, find a better approximation for the root using $x_0 = 3.5$ with one application of Newton's Method.

(c)

The polynomial $P(x) = ax^3 + bx^2 - 6x + 2$ has a factor of (x-1) and leaves a remainder of 6 when divided by (x+2).

Find the values of a and b and hence express P(x) as a product of linear factors.

(d) (i) Show that
$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$
.

(ii) Hence, if α , β and γ are the angles of $\triangle ABC$ and $\sin \gamma = 2 \sin \alpha \cos \beta$, prove that $\triangle ABC$ is an isosceles triangle.

Copyright © 2012 Neap TEMBLOA12FM 5

HSC Mathematics Extension 1 Trial Examination

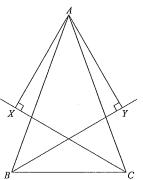
Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Given that $y = e^{2x} + e^{-2x}$, determine the values of constants a and b that satisfy the following equation:

$$\frac{d^{2}y}{dx^{2}} + a\frac{dy}{dx} + by = 5e^{2x} + e^{-2x}$$

b) Find
$$\int_{0}^{\pi} \frac{4 dx}{\sqrt{16 - x^2}}$$
.

(c) AB and AC are equal chords of a circle.


Prove that the tangent at A is parallel to BC. (Drawing a diagram to represent this information may be helpful.)

f the 5

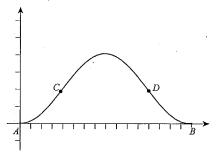
Copyright © 2012 Neap

Marks

(d) Prove that the vertex of an isosceles triangle is equidistant from the bisectors of the base angles.

Marks

Ouestion 13 (15 marks) Use a SEPARATE writing booklet.


- $P(2at, at^2)$ is a variable point on the parabola $x^2 = 4ay$, where the focus is S. Q divides the interval from P to S in the ratio t^2 : 1, where $x = \frac{2at}{t^2 + 1}$ and $y = \frac{2at^2}{t^2 + 1}$.
 - (i) Show that $\frac{y}{r} = t$.
 - (ii) Prove that as P moves, Q moves in a circle, and state the centre of the circle.
- Find the coefficient of x^5 in the expansion of $\left(2x \frac{1}{x}\right)^{11}$.
- A multiple-choice test contains ten questions. Each question has four choices for the correct answer. Only one of the choices is correct.
 - (i) What is the probability of getting 90% with random guessing?
 - (ii) What is the probability of getting at most 90% with random guessing?
- A particle P is moving in simple harmonic motion. At a time t seconds, its acceleration is given by $\frac{d^2x}{dt^2} = -9(x-2)$, where x metres is the displacement from the origin O. Initially the particle is at O and its velocity is 8 m/s.
 - Find the centre and period of the motion.
 - (ii) Show that $v^2 = 64 + 36x 9x^2$, where v m/s is the velocity of P.
 - (iii) Find the maximum speed of the particle.

Question 14 (15 marks) Use a SEPARATE writing booklet.

HSC Mathematics Extension 1 Trial Examination

Marks

(a) The graph of the function $f(x) = 2\sin^2 x$ is shown below:

(i) Determine the coordinates of A and B.

- (ii) Find f''(x), and hence determine the coordinates of C and D, the points where the gradient to the curve is a maximum.
- (iii) Calculate $(2\sin^2 x) dx$, leaving your answer in terms of π .
- (iv) Show that $\sin^4 x = \frac{3}{8} \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$.

- 2
- (v) Hence, determine the volume of the solid of revolution, when $y = 2\sin^2 x$ is rotated about the x-axis between A and B. Leave your answer in terms of π .
- (i) Show that $\cos x \sin x = \sqrt{2} \cos \left(x + \frac{\pi}{4}\right)$
 - (ii) Prove that $\frac{d}{dx}(e^x \cos x) = \sqrt{2}e^x \cos\left(x + \frac{\pi}{4}\right)$.
 - (iii) Prove by mathematical induction that if $y = e^x \cos x$, then
 - $\frac{d^n y}{dx^n} = \left(\sqrt{2}\right)^n e^x \cos\left(x + \frac{n\pi}{4}\right).$

End of paper

HSC Trial Examination 2012

Mathematics Extension 1

Solutions and marking guidelines

Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains will Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teacher coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

DOVIGHT © 2012 Nead ABN 49 910 305 843 PO Box 214 St Leonards NSW 1590 Tel: (02) 9438 1386 Fex: (02) 9438 1385

TENNIET_SS_12.FM

HSC Mathematics Extension 1 Trial Examination

Section I	
Sample answer	Question 6 D
Question 1 D	$y = \sin^{-1}\left(\frac{a}{x}\right)$
$\frac{x^2}{x^2 - 9} > 0 \qquad x^2 - 9 \neq 0$ $x \neq \pm 3 \qquad \dots$	1
x^2-9 $x \neq \pm 3$	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{a}{x}\right)^2}} \times \frac{a}{x^2}$
←	$\int_{0}^{\infty} \int_{0}^{1-\left(\frac{a}{x}\right)^{2}} x^{2}$
-3 3	_ <i>-a</i>
r ²	$=\frac{-a}{x\sqrt{x^2-a^2}}$
If $-3 < x < 3$ then $\frac{x^2}{x^2 - 9} < 0$	Question 7
∴x<-3, x>3	1 1 1 1 -b
Question 2 C	$\int \frac{1}{c(a-bx)} dx = \frac{1}{bc} \int \frac{-b}{a-bx} dx$
	$=-\frac{1}{2}\ln(a-bx)$
$\operatorname{cosec}\left(\frac{-7\pi}{4}\right) = \frac{1}{\sin\left(\frac{\pi}{4}\right)}$	$= \frac{1}{bc} \ln(a - bx)$ Question 8 C
the state of the s	
$=\sqrt{2}$	$\sin x = \frac{3}{5}$
$= \sqrt{2}$ Question 3 A	
$y = 2\sin^{-1}\left(\frac{x}{3}\right)$. 5
, <u> </u>	3
$\frac{\chi}{2} = \sin^{-1}\left(\frac{x}{3}\right)$	
. 2 3/	4
$\therefore -\frac{\pi}{2} \le \frac{y}{2} \le \frac{\pi}{2} \text{ and } -1 \le \frac{x}{3} \le 1$	$\tan 2x = 2\tan x$
$-\pi \le y \le \pi$ and $-3 \le x \le 3$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$
$ y \le \pi$, $ x \le 3$	^ 2(-3)
Question 4 C	$\frac{1}{1 - \left(-\frac{3}{4}\right)^2} = \frac{2\left(-\frac{3}{4}\right)^2}{1 - \left(-\frac{3}{4}\right)^2}$
Let $y = 3 - \frac{1}{2x + 6}$	$1 - \left(-\frac{3}{4}\right)^2$
Interchange x and y :	$=\frac{24}{7}$
$x=3-\frac{1}{2\nu+6}$	l ·
	Question 9 C
$\frac{1}{2y+6}=3-x$	$f(x) = -x^2 + 2x + 3$
$2y + 6 = \frac{1}{3 - x}$	$=-(x^2-2x-3)$
	=-(x+1)(x-3)
$\therefore 2y = -6 + \frac{1}{3-x}$	$\therefore \frac{1}{f(x)} = \frac{-1}{(x+1)(x-3)}$
1	, , ,
$y=-3+\frac{1}{6-2x}$	asymptotes $x = -1, x = 3$
$y = -3 - \frac{1}{2x - 6}$	Question 10 B
the state of the s	$\frac{mx_2 + nx_1}{m + n} = 10$
Question 5 B	1
$\int_{0}^{\frac{\pi}{2}} (\sin x) (\cos^4 x) dx$	$\frac{m(7)+n(-2)}{m+n}=10$
J ₀	7m - 2n = 10m + 10n
Put $u = \cos x$	-12n = 3m
$du = -\sin x dx$	$\frac{m}{n} = -4$
$\int_0^0 (u^4) \cdot - du = \int_0^1 u^4 du$	"
	∴ <i>m</i> : <i>n</i> = −4: 1 or 4: −1
	Houp

(c)

Sample answer

Question 11

(a) (i)
$${}^5C_3 \times {}^6C_1 = 60$$

(ii)
$${}^{4}C_{2} \times {}^{5}C_{0} = 6$$

$$\therefore P(E) = \frac{6}{60} = \frac{1}{10}$$

(b) (i)
$$f(3) = 10 - e^2 > 0$$

 $f(4) = 17 - e^3 < 0$

... root lies between x = 3 and x = 4.

(ii)
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 $f'(x) = 2x - e^{x-1}$
= $3.5 - \frac{1.0675...}{-5.1825...}$
= 3.71

(c)
$$P(1) = 0$$
 : $(a+b) = 4$ (1)

$$P(-2) = 6$$
 $\therefore -8a + 4b + 14 = 6$
 $-2a + b = -2$ (2)

$$(1)-(2): 3a=6$$

 $a=2 : b=2$

$$P(x) = 2x^3 + 2x^2 - 6x + 2$$

$$= (x - 1)(2x^2 + 4x - 2)$$

$$= (x-1)(x-(-1-\sqrt{2}))(x-(-1+\sqrt{2}))$$

(d) (i)
$$\sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$= \sin\alpha\cos\beta + \sin\beta\cos\alpha + \sin\alpha\cos\beta - \sin\beta\cos\alpha$$
$$= 2\sin\alpha\cos\beta$$

(ii) $\sin \gamma = 2 \sin \alpha \cos \beta$

Using (i) above:

$$= \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$= \sin(\pi - \gamma) + \sin(\alpha - \beta)$$

 $\sin \gamma = \sin \gamma + \sin (\alpha - \beta)$

$$(\alpha - \beta) = 0$$

$$\alpha - \beta = 0, \pi, 2\pi...$$

 $\alpha = \beta$, angles in a triangle are less than 180 ∴ ∆ABC is isosceles

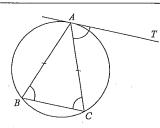
Ouestion 12

(a)
$$y = e^{2x} + e^{-2x}$$

 $y' = 2x^{2x} - 2e^{-2x}$

$$v'' = 4e^{2x} + 4e^{-2x}$$

$$\therefore 4(e^{2x} + e^{-2x}) + 2a(e^{2x} - e^{-2x}) + b(e^{2x} + e^{-2x}) = 5e^{2x} + e^{-2x}$$


Equating coefficients:

$$\therefore 2b = -2$$

$$b = -1, a = 1$$

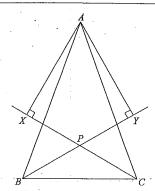
 $\therefore 2a + b = 1$ and -2a + b = -3

b)
$$\int_{0}^{\pi} \frac{4}{\sqrt{16 - x^{2}}} dx = 4 \left[\sin^{-1} \left(\frac{x}{4} \right) \right]_{0}^{\pi}$$
$$= 4 \left[\sin^{-1} \left(\frac{x}{4} \right) - \sin^{-1} (0) \right]$$
$$= 4 \left[\frac{1}{\sqrt{2}} - 0 \right]$$
$$= \frac{4}{\sqrt{2}} \text{ or } 2\sqrt{2}$$

 $\angle CAT = \angle ABC$ (angle between the tangent and the chord i equal to the angle in the alternate segment)

 $\triangle ABC$ is isosceles (two equal sides)

 $\therefore \angle ACB = \angle ABC$ (base angles of an isosceles triangle are


 $\therefore \angle ACB = \angle CAT$ (both equal $\angle ABC$)

Alternate angles are equal only when lines are parallel.

 $AD \parallel BC$

HSC Mathematics Extension 1 Trial Ex

Sample answer

Since AB = AC

then $\angle ACB = \angle ABC$ (base angles of an isosceles \triangle)

 $\therefore \angle ACX = \angle ABY$ (half of equal angles)

In $\triangle AXC$ and $\triangle AYB$:

$$AC = AB$$

$$\angle ACX = \angle ABY$$
 (above)

$$\angle AXC = \angle AYB$$
 (right angles)

$$\Delta AXC \equiv \Delta AYB \text{ (AAS)}$$

Ouestion 13

$$x = \frac{2a\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)^2 + 1}$$

$$x = \frac{\frac{2ay}{x}}{\frac{y^2}{x} + 1}$$

Multiple numerator and denominator by x^2 .

$$x = \frac{2ayx}{x^2 + x^2}$$

$$x^2 + v^2 = 2av$$

$$x^2 + y^2 - 2ay = 0$$

Completing the squares

$$(x-0)^2 + (y-a)^2 = a^2$$
, i.e. a circle.

$$C(0, a)$$
 and radius = a

(b)
$$\left(2x - \frac{1}{x}\right)^{11}$$

Coefficient of
$$x^5$$
: ${}^{11}C_k (2x)^{11-k} \left(-\frac{1}{x}\right)^k$

$$(x^{11-k})(x^{-k}) = x^5$$

$$2k=6$$

:. Coefficient of
$$x^5 = {}^{11}C_3 \ 2^{11-3}(-1)^3$$

$$=-42240$$

(i)
$$P(90\% \text{ score}) = {}^{10}C_9 \left(\frac{1}{4}\right)^9 \left(\frac{3}{4}\right)^1 \text{ or } \frac{15}{524288}$$

(ii)
$$P(\text{at most } 90\%) = 1 - P(100\%)$$

$$= 1 - \left[{}^{10}C_{10} \left(\frac{1}{4} \right)^{10} \left(\frac{3}{4} \right)^{0} \right]$$

$$= 1 - \frac{1}{4^{10}} \text{ or } \frac{4^{10} - 1}{4^{10}}$$

$$= 0.999999046$$

(i)
$$\ddot{x} = -9(x-2)$$

$$\therefore n^2 = 9$$
 and the centre of motion is 2

i.e.
$$T = \frac{2\pi}{3}$$
 and $x = 2$

Sample answer

(ii)
$$\ddot{x} = -9(x-2)$$

$$\therefore \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -9(x-2)$$

$$\frac{1}{2}v^2 = \frac{-9(x-2)^2}{2} + C$$

$$t = 0, x = 0, v = 8$$

$$\therefore C = 50$$

$$\therefore \frac{1}{2}v^2 = \frac{-9(x-2)^2}{2} + 50$$

$$v^2 = 64 + 36x - 9x^2$$

(iii) Maximum velocity when at centre of motion (i.e.
$$x = 2$$
)

 $f(x) = 2\sin^2 x$

$$v^2 = 64 + 36(2) - 9(2)^2$$

 $v^2 = 100$
 $v = \pm 10 \text{ ms}^{-1}$
i.e. v_{max} is 10 m/s

Question 14

(i)

(a)

$$\therefore \text{At } A \text{ and } B \quad f(x) = 0$$

$$2\sin^2 x = 0$$

$$\sin^2 x = 0$$

$$x = 0, \pi, 2\pi, \dots$$

$$\therefore A(0, 0) \text{ and } B(\pi, 0)$$

(ii)
$$f'(x) = 4\sin x \cos x$$
$$\therefore f'(x) = 2\sin 2x$$

and $f''(x) = 4\cos 2x$ Now, f''(x) = 0

 $\therefore 4\cos 2x = 0$

 $\therefore 4\cos 2x =$

 $\cos 2x = 0$

$$2x = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$
$$x = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$

$$\therefore C\left(\frac{\pi}{4}, 1\right) \text{ and } D\left(\frac{3\pi}{4}, 1\right)$$

(iii)
$$\int_{0}^{\pi} 2\sin^{2}x dx = 2 \int_{0}^{\pi} \frac{1}{2} (1 - \cos 2x) dx$$
$$= \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\pi}$$
$$= (\pi - 0) - (0 - 0)$$
$$= \pi$$

(iv)
$$\sin^4 x = \left[\frac{1}{2}(1-\cos 2x)\right]^2$$

 $= \frac{1}{4}[1-2\cos 2x+\cos^2 2x]$
 $= \frac{1}{4}\left[1-2\cos 2x+\frac{1}{2}(1+\cos 4x)\right]$
 $= \frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$

(v)
$$V = \pi \int_0^{\pi} [2\sin^2 x]^2 dx$$

 $= 4\pi \int_0^{\pi} \sin^4 x dx$
 $= 4\pi \int_0^{\pi} [\frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x] dx$
 $= 4\pi \left[\frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x\right]_0^{\pi}$
 $= 4\pi \left[\left(\frac{3\pi}{8}\right) - (0)\right]$
 $= \frac{3\pi^2}{2} \text{ units}^3$

(b) (i)
$$\cos x - \sin x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x \right)$$
$$= \sqrt{2} \cos \left(x + \frac{\pi}{d} \right)$$

(ii)
$$\frac{d}{dx}(e^x \cos x) = e^x \cos x + e^x(-\sin x)$$
$$= e^x(\cos x - \sin x)$$
$$= e^x \sqrt{2} \cos\left(x + \frac{\pi}{4}\right)$$

Sample answer

Syllabus outcomes and marking guide

(iii) $\frac{d^n y}{dx^n} = (\sqrt{2})^n e^x \cos\left(x + \frac{\pi}{4}\right)$

$$S_1: n=1$$
 $\frac{dy}{dx} = \sqrt{2}e^x \cos\left(x + \frac{\pi}{4}\right)$ as above in (ii)

 S_2 : Assume true for n = k

i.e.
$$\frac{d^k y}{dx^k} = (\sqrt{2})^k e^x \cos\left(x + \frac{k\pi}{4}\right)$$

 S_3 : Show true for n = k + 1

i.e.
$$\frac{d^{k+1}y}{dx^{k+1}} = (\sqrt{2})^{k+1}e^x\cos\left(x + \frac{(k+1)\pi}{4}\right)$$

Move

Now,

$$\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx} \left(\frac{d^k y}{dx^k}\right)$$

$$= \frac{d}{dx} \left[(\sqrt{2})^k e^x \cos\left(x + \frac{k\pi}{4}\right) \right]$$

$$= (\sqrt{2})^k \left[e^x \cos\left(x + \frac{k\pi}{4}\right) + e^x \left(-\sin\left(x + \frac{k\pi}{4}\right)\right) \right]$$

$$= (\sqrt{2})^k e^x \left[\cos\left(x + \frac{k\pi}{4}\right) - \sin\left(x + \frac{k\pi}{4}\right) \right]$$

$$= (\sqrt{2})^k e^x \sqrt{2} \left[\frac{1}{\sqrt{2}} \cos\left(x + \frac{k\pi}{4}\right) - \frac{1}{\sqrt{2}} \sin\left(x + \frac{k\pi}{4}\right) \right]$$

$$= (\sqrt{2})^{k+1} e^x \cos\left(\left(x + \frac{k\pi}{4}\right) + \frac{\pi}{4}\right)$$

$$= (\sqrt{2})^{k+1} e^x \cos\left(x + (k+1)\frac{\pi}{4}\right)$$

HE2, Band 6

Simplifies to show $\frac{d^{k+1}y}{dx^{k+1}}$3

Finds the derivative of $\frac{d^k y}{dx^k}$ correctly2

Shows true for $n = 1 \dots 1$

 S_a : Since true for n = 1, then true for n = 1 + 1 = 2 and

 \therefore If true for n = k, then true for n = k + 1.

so on for all integral values of n.

Copyright © 2012 Neap