

NORTH SYDNEY BOYS' HIGH SCHOOL

2008 HSC Course Assessment Task 2

MATHEMATICS

General instructions

- Working time 60 minutes.
- . Write in the booklet provided.
- Each new question is to be started on a new booklet.
- Write using blue or black pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets within this paper and hand to examination supervisors.

Class teacher (please ✓

- () Mr Fletcher
- O'Mr Lam
- O Mr Lowe
- O Mr Ireland
- O Mr Trenwith
- O Mr Rezcallah
- O Mr Weiss

Marker's use only.

QUESTION	MARKS
1	/12
2	/12
3 .	/11
4	/13
5	/6
Total	/54
Total (%)	/100

STUDENT NUMBER:

2008 MATHEMATICS (HSC COURSE) ASSESSMENT TASK 2

Ques	stion 1 (12 M	arks)	Comn	nence a new	booklet.		Ma	rks
(a)	i.	Find $\int 6x^7 d$	x.					2
	į ii.	Evaluate \int_0^1	$5x^4 + 3x + 1 dx$	·				2
(b)	Find $\int \frac{a}{a}$	$\frac{x^3 + x^2}{2x} dx.$				• •		2
(c)	i.	Differentiate	$y = \left(2x^5 - 1\right)^3.$					2
	ii.	Hence or other	erwise, find $\int 1$	$10x^4 (2x^5 - 1)$	$\int_{0}^{2} dx$			2 .
	. · ·		c.k.		1.1			
, (d)	Find the	exact value of	$k \text{ if } \int_{2}^{k} 3x^2 dx$	= 50.				2
					•			
	•		•	· :				
Que	stion 2 (12 M	arks)	Com	nence a new	booklet.			
(a)	i.	Evaluate \int_{-a}^{a}	$x^5 dx$.	٠		æ		2
	ii.	Find the area $x = a$ and th	bounded by the x axis.	e curve $y=x$	r ⁵ between the	lines $x =$	-a,	2
(b)	By sketch	ning the curve y	$y=\sqrt{9-x^2}$, here	nce or otherw	vise evaluate \int_0^{\cdot}	$\sqrt{9-x}$	$\overline{d}^{2}dx$	3
(c)	Given s''	$(t) = 2t^2, s'(2)$	= 1 and s(1) =	= 2, find:				
	į.	s'(t)						2
	ii.	s(3)		·				3

Commence a new booklet. Marks Question 3 (11 Marks) Find the area of the region between the curves y = 3x + 4Find the volume of solid of revolution when the region bounded by the curve $y = x^2 + 1$, the y axis, the lines y = 2 & y = 5, rotated about the y axis. $2^x dx$ by using Simpson's Rule with 5 function Find an approximation to (c) values. Commence a new booklet. Question 4 (13 Marks) The probability that a particular man lives to the age of 75 is $\frac{4}{5}$ and the probability that his wife will live to 75 is $\frac{6}{7}$. By drawing a tree diagram or otherwise, find: Only the man will live to 75. Both will live to 75. At least one of them will live to 75. iii. In a bag with 20 marbles, seven are red, nine are gold & four are blue. One marble is taken from the bag and not replaced, then a second is taken out. Find the probability of choosing: Two red marbles. Marbles of a different colour If an integer x between 1 and 100 (inclusive) is chosen at random, find the probability of the number being: Less than 50 or a multiple of 5.

Being a multiple of 9 but not a multiple of 12.

Question 5 (6 Marks)

Commence a new booklet.

Marks

- (a) i. Find the equation of a line passing through the points (0,0) and (h,r).
 - ii. Using the diagram below & by rotating the given line about the x axis, derive the formula for the volume of a cone with radius r and height h.

(b) A certain telecommunications company offers "untimed" international calls but disconnects the call after 3 hours.

The probability of a call duration between a < t < b hours using the function is

Using this, find the probability of a call lasting

- i. Between 60 & 90 minutes.
- . Exactly 1.5 hours:

:

End of paper.

Solutions

Question 1

(a) i. (2 marks)

$$\int 6x^7 dx = \frac{3}{4}x^8 + C$$

ii. (2 marks)

$$\int_0^1 5x^4 + 3x + 1 dx$$

$$= \left[x^5 + \frac{3}{2}x^2 + x \right]_0^1$$

$$= 1 + \frac{3}{2} + 1 = \frac{7}{2}$$

(b) (2 marks)

$$\int \frac{x^3 + x^2}{2x} dx = \frac{1}{2} \int \frac{x^3}{x} + \frac{x^2}{x} dx$$

$$= \frac{1}{2} \int x^2 + x dx$$

$$= \frac{1}{2} \left(\frac{1}{3} x^3 + \frac{1}{2} x^2 \right) + C$$

$$= \frac{1}{6} x^3 + \frac{1}{4} x^2 + C$$

(c) i. (2 marks)

$$y = (2x^{5} - 1)^{3}$$

$$y(u) = u^{3} \quad u(x) = 2x^{5} - 1$$

$$y'(u) = 3u^{2} \quad u'(x) = 10x^{4}$$

$$y'(x) = y'(x) \times u'(x)$$

$$= 3u^{2} \times 10x^{4}$$

$$= 30x^{4} (2x^{5} - 1)^{2}$$

ii. (2 marks)

$$\int 10x^4 (2x^5 - 1)^2 dx$$

$$= \frac{1}{3} \int 30x^4 (2x^5 - 1)^2 dx$$

$$= \frac{1}{3} (2x^5 - 1)^3 + C$$

iii. (2 marks)

$$\int_{2}^{k} 3x^{2} = 50$$

$$\left[x^{3}\right]_{2}^{k} = 50$$

$$k^{3} - 2^{3} = 50$$

$$k^{3} = 58$$

$$k = 58^{1/3}$$

Question 2

(a) i. (2 marks)

$$\int_{-a}^{a} x^{5} dx = \left[\frac{1}{6}x^{6}\right]_{-a}^{a}$$

$$= \frac{1}{6}\left(x^{6} - \sqrt{a}\right)^{6}$$

$$= 0$$

ii. (2 marks)

Since the integral is 0, then the area from x = -a to x = 0 must be equal to the area from x = 0 to x = a.

$$A = 2 \int_0^a x^5 dx$$
$$= 2 \left[\frac{1}{6} x^6 \right]_0^a$$
$$= \frac{1}{3} a^6$$

Both marks to be awarded iff explanation is acceptable.

(b) (3 marks)

The integral $\int_0^3 \sqrt{9-x^2} dx$ is the same as the area of the quarter circle.

$$\int_0^3 \sqrt{9 - x^2} \, dx = \frac{1}{4} \pi \times 3^2$$
$$= \frac{9}{4} \pi$$

(c) i. (2 marks)

$$s'(t) = \int s''(t) dt$$
$$= \int 2t^2 dt$$
$$= \frac{2}{3}t^3 + C_1$$

Using s'(2) = 1 $1 = \frac{2}{3} \times 2^3 + C_1$ $= \frac{16}{3} + C_1$ $C_1 = 1 - \frac{16}{3} = -\frac{13}{3}$

ii. (3 marks)

$$s(t) = \int s'(t) dt$$

$$= \int \frac{2}{3}t^3 - \frac{13}{3} dt$$

$$= \frac{2}{3} \cdot \frac{1}{4}t^4 - \frac{13}{3}t + C_2$$

$$= \frac{1}{6}t^4 - \frac{13}{3}t + C_2$$

 $s'(t) = \frac{2}{2}t^3 - \frac{13}{2}$

Using s(1) = 2, $2 = \frac{1}{6} - \frac{13}{3} + C_2$ $C_2 = 2 - \frac{1}{6} + \frac{13}{3}$ $= \frac{37}{6}$ $\therefore s(t) = \frac{1}{6}t^4 - \frac{13}{3}t + \frac{37}{6}$ $\therefore s(3) = \frac{20}{2}$

Question 3

(a) (4 marks)

Find the points of intersection between the two curves by equating,

$$x^{2} = 3x + 4$$

$$x^{2} - 3x - 4 = 0$$

$$(x - 4)(x + 1) = 0$$

$$x = 4, -1$$

The area is thus

$$A = \left| \int_{-1}^{4} (3x+4) - x^2 \, dx \right|$$

$$= \left| \int_{-1}^{4} x^2 - 3x - 4 \, dx \right|$$

$$= \left| \left[\frac{1}{3} x^3 - \frac{3}{2} x^2 - 4x \right]_{-1}^{4} \right|$$

$$= \frac{125}{6}$$

(b) (3 marks) y 5 2 y y x^2+1

Changing the subject to x^2 :

$$y = x^2 + 1$$
$$x^2 = y - 1$$

Integrating,

$$V = \pi \int_{2}^{5} x^{2} dy$$

$$= \pi \int_{2}^{5} y - 1 dy$$

$$= \pi \left[\frac{1}{2} y^{2} - y \right]_{2}^{5}$$

$$= \pi \left(\frac{1}{2} (5^{2} - 2^{2}) - (5 - 2) \right)$$

$$= \pi \left(\frac{21}{2} - 3 \right)$$

$$= \frac{15\pi}{2}$$

(c) (4 marks)

Using Simpson's Rule with the 5 function values from the table.*

$$A \approx \frac{h}{3} (y_1 + 4y_{\text{even}} + 2y_{\text{odd}} + y_{\ell})$$

$$= \frac{\frac{1}{4}}{3} (1 + 4(2^{1/4} + 2^{3/4}) + 2 \times 2^{1/2} + 2)$$

$$= 1.4427 (4 \text{ d.p.})$$

Question 4

(a) Draw out the probability tree, letting the event of the man living to 75+ be M and the event of the woman living to 75+ be W.

i. (1 mark)

$$P(M) = P(M) \times P(\overline{W}) = \frac{4}{5} \times \frac{1}{7} = \frac{4}{35}$$

ii. (2 marks)

$$P(MW) = P(M) \times P(W)$$
$$= \frac{4}{5} \times \frac{6}{7} = \frac{24}{35}$$

The first mark is for identification of a pair of independent events.

iii. (2 marks)

$$P(\text{at least } M \text{ or } W)$$

$$= 1 - P(\text{neither})$$

$$= 1 - (P(\overline{M})P(\overline{W}))$$

$$= 1 - \left(\frac{3}{5} \times \frac{1}{7}\right) = \frac{32}{35}$$

The first mark is for identifying the complement.

(b) i. (2 marks)

ii. (2 marks)

$$\begin{split} &P(\text{different})\\ &= 1 - P(\text{same})\\ &= 1 - (P(RR) + P(GG) + P(BB))\\ &= 1 - \left(\frac{21}{190} + \left(\frac{9}{20} \times \frac{8}{19}\right) + \left(\frac{4}{20} \times \frac{3}{19}\right)\right)\\ &= \frac{127}{120} \end{split}$$

- (c) A Venn diagram would assist in the calculations. Not drawn here for brevity.
 - i. (2 marks)

There are 11 multiples of 5 from 50 to 100 inclusive, and 49 numbers less than 50 (1 to 49). Hence

$$P(x < 50 \cup 5|x) = \frac{49 + 11}{100} = \frac{3}{5}$$

A Venn diagram would assist in the calculations.

ii. (2 marks)

Common multiples of 9 and 12 are 36 & 72. Since there are 11 multiples of 9 between 1 & 100, then there are 9 of them which are not also multiples of 12. Hence

$$P(x|9 \cap 12 / x) = \frac{9}{100}$$

Question 5

(a) i. (1 mark)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{r - 0}{h - 0} = \frac{r}{h}$$
$$\therefore y = \frac{r}{h}x$$

ii. (2 marks)

$$V = \pi \int_0^h y^2 dx$$

$$= \pi \int_0^h \frac{r^2}{h^2} x^2 dx$$

$$= \frac{\pi r^2}{h^2} \left[\frac{1}{3} x^3 \right]_0^h$$

$$= \frac{\pi r^2}{h^2} \times \frac{1}{3} h^3$$

$$= \frac{1}{2} \pi r^2 h$$

(b) i. (2 marks)

$$P(1 < t < 1.5)$$

$$= \int_{1}^{3/2} -\frac{2}{9}t + \frac{2}{3}dt$$

$$= \left[-\frac{1}{9}t^{2} + \frac{2}{3}t \right]_{1}^{3/2}$$

$$= \left(-\frac{1}{9}\left(\frac{9}{4} - 1\right) + \frac{2}{3}\left(\frac{3}{2} - 1\right) \right)$$

$$= \left(-\frac{1}{9}\left(\frac{5}{4}\right) + \frac{2}{3} \times \frac{1}{2} \right)$$

$$= \frac{7}{36}$$

Both marks to be awarded if student is capable of finding the function values at t=1 and $t=\frac{3}{2}$, then using the area of a trapezium to find the proper area.

ii. (1 mark)

$$P(t = 1.5) = P(1.5 < t < 1.5)$$

$$= \int_{1.5}^{1.5} f(t) dt$$

$$= 0$$

Highlights the theoretical impossibility of ANY call lasting exactly 1.5 hours under a continuous probability distribution.

^{*}Students may use a 4 d.p. approximation of 2" where 2^x is irrational.