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Year 11 Yearly

Mathematics Accelerated

General Instruction
s Reading Time - 5 Minutes
¢ Working time — 90 Minutes

e  Write using black or blue pen,
Pencil may be used for diagrams.

s Board approved calculators maybe
used.

e Start each NEW question in a
separate answer booklet.

e Marks may NOT be awarded for
messy or badly arranged work.,

s All necessary working should be
shown in every question.

s Answer in simplest exact form
unless otherwise instructed.

Total Marks — 80

Attempt questions 1-5.

Examiner:

J. Chen
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START A NEW ANSWER BOOKLET
QUESTION ONE [18 marks] '

(a
@) Use the standard integrals to find,

f sec2xtan2x.dx

fx_B.dx
x

tanx.dx

(i)

(ii)

(b) Evaluate
(i)
e
f sin(e —x).dx
-e
(i)
1
f (2 +e*).dx
0
(c) Differentiate the following with respect to x,
(i) tan(sin x)

(ii) ex+cosx

@

7
Vs

(i) Explain why ABCD is a parallelogram.

(if)  If PQ are the midpoints of AD and BC respectively, explain
why AB||PQJICD.

(iliy  Prove that OP = OQ.

End of Question One

@4;‘:6/«[:

[5 marks]

[5 marks]

[3 marks]

[S marks}
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START A NEW ANSWER BOOKLET

QUESTION TWO [13 marks]

(a) The graph below shows the derivative of the curve y = f(x).
L2
dx

[ PR

v

® Explain why the curve y = f(x) has stationary points
atx=aandx = c.

(ii) ~ What type of stationary point is at x = a and why?

(iii) ~ What type of stationary point is at x = ¢ and why?

(iv)  Sketch a possible graph of y = f(x).

®

) Differentiate xe*.
(ii) Hence, evaluate

1
f xe*.dx
0

(c) Determine the value of a + b+ ¢ +d +e, giving reasons.

End of Question Two

[6 marks]

[4 marks]

[3 marks]}
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START A NEW ANSWER BOOKLET

QUESTION THREE [17 marks}]

(a) In the diagram, the shaded area A is 5 cm?, the shaded area B [1 mark]
is 8 cm?, the shaded area C is 7 cm? and the shaded area D is 6 cm?.
)7“
y=f{0)
8 D
< 5 3 ()58 ) 3 6 ’i
A \ C
v

Find .
f ] flx).dx

(b) In the diagram below, ABC is the sector df a circle with radius 2 em, [6 marks]
£CABis30°and AD=BD=1cm.

C
A

™
NOT TOSCALE

30°
A 1 D 1 B

(i) Find the perimeter of the shaded region BCD correct fo the
nearest 2 decimal places.
(ii)  Find the exact area of the shaded region BCD.
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(c) The diagram below shows Mr. Smith’s farm. All measurements are

@

in metres.

3.5 3.2
1.8
15 15 15 15
Use Simpson’s rule with 5 function values to approximate the area of
the farm.

) Find the coordinates of the points of intersection of the two
curvesy =x% —2x + landy = 4x — x? — 3.

(iiy  Calculate the area contained by the two curves between the
points of intersection. -

(e) The temperature of a cup of black coffee is given by T = 100e~/5

where t is the time in minutes,
If it is too hot to drink above 55°C and too cold below 25°C.

Calculate the length of time during which the coffee is drinkable (to
the nearest second).

End of Question Three

PGB8 1€ BLANK

[2 marks]

{4 marks}

[4 marks]
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START A NEW ANSWER BOOKLET

QUESTION FOUR [16 marks]
(a) A particle moves along the x-axis. Initially it is at rest at the origin.

2
The graph shows the acceleration, % , of the particle as a function
oftime t.

d2x
dt?

(g}

I>
B R oY

~ Y

o,
[oed

Of -

(i) Using Simpson’s rule, estimate the velocity of the particle
att = 4,

(iiy ~ Write down the time at which the velocity of the particle is a
maximum.

(iii)  Estimate the time at which the particle is furthest from the
origin in the positive direction. Justify your answer,

(b) Consider the function f(x) = (x% — 4)(x% — 2).

(i) Find the x intercepts of the curve.

(ii)  Find the coordinates of the stationary points and determine
their nature.

(iiiy  Find any points of inflexion.

(iv)  Sketchy = f(x), showing all critical points.

@) Determine the values of x for'which the function concaves
up.

End of Question Four

PG1O 1S BLANK

[6 marks]

[10 marks}

Page 9 of 11

START A NEW ANSWER BOOKLET

QUESTION FIVE [16 marks]

(a) A T-shirt company makes 500 shirts per month. At $30 each, they
can sell all the shirts. If the price of each shirt is increased by $3,
then this will result in a 5 shirt reduction in sales for each $3
increment. Also, the company has fixed costs of $6500 per month,

@) Let the number of $3 increments be x, prove that the monthly
profit P, in dollars, is given by P = 8500 + 1350x — 15x2,

(ii)  Find how many shirts would be sold and the price that should
be charged per shirt to ensure maximum monthly profit.

(b) Consider the function f(x) = ﬁ ,forx > 1,

) Show that the function y = f(x) has a minimum point
atx = e.
(ii)  Hence, use (b) (i) to show that x < e* forx > 1.

(c) The region bounded by the curve y = logs x, the line y = 2 and
the x and y axes, is rotated about the y axis.

) Show that the volume of the solid of revolution formed is
given by

2
V=7rf 9¥.dy
0

(if)  Hence evaluate the volume in exact simplified form.

End of Exam

[6 marks]

[S marks]

[5 marks]
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1

2011 Accelerated Mathematics Yearly:
Solutions— Question 1

(a) (i) Use the standard integrals to find

sec 2¢ tan 2z dz,

Solution: / sec 2r ban 2z dr = Lsec2z +c.

(i) /x;S dz,

Solution: / (1 - %) dr=z-3Inz+c.

(iid) / tan z d.

—sine
cos T

Solution: ——/———dm = —Incosz +¢ (or Insecz +c).

(b) Evaluate

(1) - sin(e — ) dz,

e
Solution: / sin(e — o) dr = [ - cos(e — z)]°

—g?
—-e

= 1 —cos2e.

(it) /0 (2 +€%) da.

1 .
Solution: / (2+&)de= [2z+ e”];,
0

24e—(04+1),
l+e. '

(1|

(c) Differentiate the following with respect to z:
(i) ten(sinz),

Solution:  Put y = tanwu, u= sing,
dyfan = sec®u, /i = cos,

di _ dy s du

d = du X

d
i.e., ﬂ( tan(sinz)) = cos zsec(sin z).

(ii) Faa

Solution: :1% (7+99%) = (1 + ~sing)e+eoss,

= (1 — sing)est»=,

(d) . A B

P

%\ / Q
D c
(i) Explain why ABCD is a parallelogram.

Solution: Diagonals AC, BD bisact each other at O (data),
.. ABCD is a parallelogram. :

(ii) If P, Q are the midpoints of AD and BC"respectively, explain why
AB || PQ | CD.

Solution: P is the midpoint of AD (data),
O is the midpoint of AC (AQ = OC, given),
.. PO || DC (midpoint theorem for AADC).
Similerly, PO || AB (midpoint theorem for AADB).
S AB| PQ| DC.

(iii) Prove that OP = 0Q.

Solution: OP = 1DC (midpoint theorem for AADC)
0@ = 3DC (midpoint theorem for ABDC)
SOP = 0Q.

- -
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