

SYDNEY BOYS HIGH SCHOOL HOORE PARK, STRRY HILLS

2011

Year 11 Yearly

Mathematics Accelerated

General Instruction

- · Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen.
 Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each NEW question in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 80

Attempt questions 1-5.

Examiner:

J. Chen

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$
NOTE: $\ln x = \log_{a} x, \ x > 0$

START A NEW ANSWER BOOKLET

QUESTION ONE [18 marks]

Use the standard integrals to find, $\sec 2x \tan 2x \cdot dx$

$$fx-3$$

(iii)
$$\int \tan x \, dx$$

(b) Evaluate (i)

(ii)

[5 marks]

$$\int_{-e}^{e} \sin(e-x) \cdot dx$$

(ii)
$$\int_0^1 (2 + e^x) . \, dx$$

(c) Differentiate the following with respect to x,

- (i) tan(sin x)
- ex+cosx (ii)

(d)

[5 marks]

Page 3 of 11

- Explain why ABCD is a parallelogram.
- (ii) If PQ are the midpoints of AD and BC respectively, explain why AB||PQ||CD.
- Prove that OP = OQ.

End of Question One

QUESTION TWO [13 marks]

(a) The graph below shows the derivative of the curve y = f(x).

- (i) Explain why the curve y = f(x) has stationary points at x = a and x = c.
- What type of stationary point is at x = a and why?
- What type of stationary point is at x = c and why?
- Sketch a possible graph of y = f(x). (iv)

(b) [4 marks]

Differentiate xe^x . Hence, evaluate

$$\int_0^1 x e^x \, dx$$

(c) Determine the value of a + b + c + d + e, giving reasons. [3 marks]

End of Question Two

START A NEW ANSWER BOOKLET

QUESTION THREE [17 marks]

(a) In the diagram, the shaded area A is 5 cm^2 , the shaded area B is 8 cm^2 , the shaded area C is 7 cm^2 and the shaded area D is 6 cm^2 .

[1 mark]

(b) In the diagram below, ABC is the sector of a circle with radius 2 cm, [6 marks] ∠ CAB is 30° and AD = BD = 1 cm.

- (i) Find the perimeter of the shaded region BCD correct to the nearest 2 decimal places.
- (ii) Find the exact area of the shaded region BCD.

(c) The diagram below shows Mr. Smith's farm. All measurements are in metres.

[2 marks]

Use Simpson's rule with 5 function values to approximate the area of the farm.

(d)

[4 marks]

- (i) Find the coordinates of the points of intersection of the two curves $y = x^2 2x + 1$ and $y = 4x x^2 3$.
- (ii) Calculate the area contained by the two curves between the points of intersection.
- (e) The temperature of a cup of black coffee is given by $T = 100e^{-t/5}$ where t is the time in minutes.

[4 marks]

If it is too hot to drink above 55°C and too cold below 25°C. Calculate the length of time during which the coffee is drinkable (to the nearest second).

End of Question Three

START A NEW ANSWER BOOKLET

QUESTION FOUR [16 marks]

(a) A particle moves along the x-axis. Initially it is at rest at the origin.

The graph shows the acceleration, $\frac{d^2x}{dt^2}$, of the particle as a function of time t.

[6 marks]

- (i) Using Simpson's rule, estimate the velocity of the particle at t = 4.
- (ii) Write down the time at which the velocity of the particle is a maximum.
- (iii) Estimate the time at which the particle is furthest from the origin in the positive direction. Justify your answer.

(b) Consider the function $f(x) = (x^2 - 4)(x^2 - 2)$.

[10 marks]

- (i) Find the x intercepts of the curve.
- (ii) Find the coordinates of the stationary points and determine their nature.
- (iii) Find any points of inflexion.
- (iv) Sketch y = f(x), showing all critical points.
- (i) Determine the values of x for which the function concaves up.

End of Question Four

START A NEW ANSWER BOOKLET

QUESTION FIVE [16 marks]

(a) A T-shirt company makes 500 shirts per month. At \$30 each, they can sell all the shirts. If the price of each shirt is increased by \$3, then this will result in a 5 shirt reduction in sales for each \$3 increment. Also, the company has fixed costs of \$6500 per month.

[6 marks]

- (i) Let the number of \$3 increments be x, prove that the monthly profit P, in dollars, is given by $P = 8500 + 1350x 15x^2$.
- (ii) Find how many shirts would be sold and the price that should be charged per shirt to ensure maximum monthly profit.

(b) Consider the function $f(x) = \frac{x}{\ln x}$, for x > 1.

[5 marks]

- (i) Show that the function y = f(x) has a minimum point at x = e.
- (ii) Hence, use (b) (i) to show that $x^e \le e^x$ for x > 1.
- (c) The region bounded by the curve $y = \log_3 x$, the line y = 2 and the x and y axes, is rotated about the y axis.

[5 marks]

(i) Show that the volume of the solid of revolution formed is given by

$$V = \pi \int_0^2 9^y \, dy$$

(ii) Hence evaluate the volume in exact simplified form.

End of Exam

2011 Accelerated Mathematics Yearly: Solutions— Question 1

1. (a) (i) Use the standard integrals to find $\int \sec 2x \tan 2x \, dx,$

Solution: $\int \sec 2x \tan 2x \, dx = \frac{1}{2} \sec 2x + c.$

(ii)
$$\int \frac{x-3}{x} dx,$$
 Solution:
$$\int \left(1 - \frac{3}{x}\right) dx = x - 3 \ln x + c.$$

(iii) $\int \tan x \, dx$. Solution: $-\int \frac{-\sin x}{\cos x} \, dx = -\ln \cos x + c$ (or $\ln \sec x + c$).

(b) Evaluate
(i)
$$\int_{-e}^{e} \sin(e-x) dx,$$
Solution:
$$\int_{-e}^{e} \sin(e-x) dx = \left[-\cos(e-x)\right]_{-e}^{e},$$

$$= 1 - \cos 2e.$$

5

(ii)
$$\int_0^1 (2 + e^x) dx.$$
Solution:
$$\int_0^1 (2 + e^x) dx = [2x + e^x]_0^1,$$

$$= 2 + e - (0 + 1),$$

$$= 1 + e.$$

(c) Differentiate the following with respect to x:(i) tan(sin x),

Solution: Put $y = \tan u$, $u = \sin x$, $\frac{dy/du}{du} = \sec^2 u$, $\frac{du}{dx} = \cos x$, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$, i.e., $\frac{d}{dx}(\tan(\sin x)) = \cos x \sec^2(\sin x)$.

3

5

(ii) $e^{x+\cos x}$. Solution: $\frac{d}{dx}(e^{x+\cos x}) = (1+\sin x)e^{x+\cos x},$ $= (1-\sin x)e^{x+\cos x}.$

(i) Explain why ABCD is a parallelogram.

Solution: Diagonals AC, BD bisect each other at O (data), $\therefore ABCD$ is a parallelogram.

(ii) If $P,\,Q$ are the midpoints of AD and BC respectively, explain why $AB\parallel PQ\parallel CD.$

Solution: P is the midpoint of AD (data), O is the midpoint of AC (AO = OC, given), $\therefore PO \parallel DC$ (midpoint theorem for $\triangle ADC$). Similarly, $PO \parallel AB$ (midpoint theorem for $\triangle ADB$). $\therefore AB \parallel PQ \parallel DC$.

(iii) Prove that OP = OQ.

Solution: $OP = \frac{1}{2}DC$ (midpoint theorem for $\triangle ADC$) $OQ = \frac{1}{2}DC$ (midpoint theorem for $\triangle BDC$) $\therefore OP = OQ.$

8 . 1

$$\begin{array}{c|c}
(a) & \int_{-5}^{6} \int_{-5}$$

(j)
$$BC = 2 \times \overline{L} = \overline{3}$$

 $CD^2 = 1 + 4 - 2 \times 2 CO5^{20}$
 $= 5 - 4 \times \overline{2}$
 $= 5 - 2 \overline{5}$
 $CD = \sqrt{5 - 2 \overline{5}}$

$$P = \frac{1}{3} + \frac{1}{5} - \frac{2}{3} + 1$$

$$= \frac{3.29 \text{ cm}}{3.29 \text{ cm}} = \frac{3}{3}$$

(c)

$$A = \frac{30}{6} [1.8 + 4x3.57(2] + \frac{32}{6} [62 + 4x3.2 + 0]$$

= 205 m² [27]

(d)
$$y=x^{2}-2n+1$$
; $y=4n-x^{2}$
At Indersections:
(i) $\chi^{2}-2n+1=4x-x^{2}-3$
 $2x^{2}-6x+4=0$

$$2\pi^{2}-6x+4=0$$
 $x^{2}-3n+1=0$
 $(x-2)(x-1)=0$
: | tercepts at $x=1$, $x=2$
 $y=0$, $y=1$
is $(1,0)$, $(2,1)$ [2]

$$(ii) A = \int_{1}^{2} (3x^{2} + 4x - 3) - (x^{2} - 2x + 1) dx$$

$$= \int_{1}^{2} (-2x^{2} + 6x - 4) dx$$

$$= \left[-\frac{2x^{2}}{3} + 6\frac{2e^{2}}{2} - 4x \right]_{1}^{2}$$

$$= \left(-\frac{2}{3}x^{8} + 3x^{4} - 8 \right) - \left(-\frac{2}{3} + \frac{4}{5} - \frac{4}{5} \right)$$

$$= \frac{1}{3} \text{ unit }^{2}$$

(e)
$$T = 100 e^{-t/5}$$

 $M(I) = -t/5$
 $t = -5 M(7/100)$
 $t_1 = -5 M(0.55)$
 $t_2 = -5 M(0.25)$

(i)
$$\int_{0}^{b} f(t) dt \approx \frac{b-a}{6} (f(a) + 4f(a + \frac{b}{2}) + f(b))$$

 $\int_{0}^{4} f(t) dt \approx \frac{2}{3} (0 + 12 + 6)$

$$12 + \frac{1}{2} \times 2 \times 6 - \frac{1}{2} \times 2 \times 6 - \int_{8}^{t_{max}} f(t) dt = 0.$$

$$\int_{8}^{t_{max}} f(t) dt = 12$$

(b)
$$f(x)=(x^2-4)(x^2-1)$$
.

(i)
$$(x^2-4)(x^2-2)=0$$

$$x = \pm 2, \pm \sqrt{2}.$$

(i)
$$\int_{0}^{1}(x) = 2\pi(x^{2}-4) + 2x(x^{2}-2)$$

$$= 2x(2x^2-6)$$

$$x=0$$
 $x=\pm\sqrt{3}$.

$$\int_{0}^{11}(x)=2(2x^{2}-6)+2x(4x)$$

$$= 12 \times 12.$$

$$= 12 (x^2 - 1).$$

$$(\sqrt{3}, -1)$$
 Z

$$f''(-\sqrt{3}) < 0$$
 maxima. $(-\sqrt{3}, -1)$.

[YAII ACCREM. YRLY]

QUESTION FIVE

(a) (1)
$$P = (30+3x)(500-5x) - 6500$$
.
= $15(10+x)(100-x) - 6500$
= $15(10+x)(100-x) - 6500$
= $15(1000+90x-x) - 15x - 6500$
= $15000+1350x-15x - 6500$
= $8500+1350x-15x - 75x - 6500$

$$/350 - 30n = 0$$

£ = 45°-

.. NO. OF SHIRTS

is 500-5×45 = 275

PRICE PER SHIRT

(NB P"ZO .. MAX.) IS OK

If you we the 1'st describine test make our that mumbers are reved !!)

- infor is or

(b)

$$f(x) = \frac{x}{ux}$$

(1)
$$f(x) = \ln x - x + \frac{1}{x}$$
(lnsx)

THE TABLE.

-- f(e) >0 i. MIN. where

95 (com) TAR RESULT X SEX] (C) (1) V = 17 \ x^2 dy 2=(37)2 (11) V = \frac{17}{\text{lng}} \left[97] \frac{2}{0} \\ = \frac{17}{\text{lng}} \left(9^{2} - 9^{0} \right) = 11 (81-1)

-11-

= 8011

= 80 TT