

Year 9

Yearly Examination 2009

Advanced

General Instructions

- Working time 90 minutes
- Write using black or blue pen.
 Approved calculators may be used.
 All necessary working MUST be
- shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- · Clearly indicate your class by placing an X, next to your class

Mathematics

- All answers should be presented in simplest exact form, unless otherwise directed.
- · Marks may not be awarded for untidy or badly arranged work.

Examiner: A.M.Gainford

NAME:

(45)	
Class	Teacher
9 A	Mr Kourtesis
9 B	-Ms Nesbitt
9 C	Ms Ward
9 D	Ms Roessler
9 E	Mr McQuillan
9 F	Mr Boros
9 G	Mr Hespe

Question	Mark
1	/18
2	/18
3	/18
4	/18
5	/18
6	/18
7	· /18
Total	/126

Question 1. (18 marks)

		Answers
(a)	Find, correct to 4 decimal places:	(i)
[2]	(i) sin 46°22' (ii) tan 84°12'	(ii)
(b)	Express 0 0064045 in scientific notation, correct to four significant figures.	
[1]		
(c)	Arrange this set of numbers in order, smallest to largest:	
[2]	$\left\{\frac{11}{7}, \frac{\pi}{2}, \sqrt{3}, (0.66667)^{-1}\right\}$	
(d)	In each case find the acute angle θ correct to the nearest minute:	(i)
(u)	in each case find the acute angle v correct to the hearest findite.	(1)
[2]	(i) $\cos \theta = 0.9$ (ii) $\tan \theta = 2.5$	(ii)
(e)	Express $\sqrt{45} - \sqrt{20}$ as a simple surd.	
[2]		
(f)	Simplify the following expression:	
	$\frac{6\left(xy^2\right)^4}{\left(3x^3y\right)^2}$	
	$\overline{\left(3x^3y\right)^2}$	
[2]		
(g)	Express in simplest surd form	
	(i) $2\sqrt{75} - 3\sqrt{48}$	(i)
	(ii) $\frac{6\sqrt{2}\times\sqrt{6}}{4\sqrt{3}}$	(ii)
[2]		
(h)	Expand and simplify $(3x-2)-2(x+2)$.	1
[2]		
(i)	At a Sydney Swans match in Sydney there were five men to every two women. If 31 514 fans attended, how many men were there?	
[1]		

		Answers
(j)	Solve for x:	
	4(x+2)-3(x-1)=23	
[2]		

Question 2. (18 marks)

(a)	A letter is chosen at random from the word <i>KATOOMBA</i> . What is the probability that the letter is:	(i)
	(1) 4 (11) 7	(ii)
[3]	(i) A (ii) a consonant (iii) Z	(iii)
(b)	Factorise completely:	
	(i) $9ab^2 - 6a^2b$	(i)
	(ii) $4y^2 - 36$	(ii)
[3]		
(c)	Find the volume and surface area of the closed rectangular prism, where measurements are in centimetres.	Volume =
[4]	25	SA =
(d)	Factorise (i) $x^2 - 6x + 8$	(i)
	(ii) $8x^2 + 18x - 5$	(ii)
[4]		
(e)	Find x, correct to 3 decimal places.	
-	x x	
[2]	10	

		Answers
(f)	A certain quad scull races at 18 km/hr.	
	(i) How far will it go in 2 minutes?	(i)
	(ii) How long, to the nearest second, will it take to race 1100 m?	(ii)
[2]	·	

Question 3 (18 Marks)

(a)	Two ordinary dice (6 faces) are (i) rolled, and the uppermost faces noted.	
	(i) Use a grid or table to show all possible outcomes.	
	(ii) What is the probability of a double?	(ii)
	(iii) What is the probability that the sum is 7 or 11?	(iii)
4]		
b)	Consider the line with equation $2x - 5y + 10 = 0$	
	(i) State the gradient of the line.	(i)
	(ii) State the y-intercept of the line.	(ii)
3]	(iii) State the x-intercept of the line.	(iii)

		Answers
(c)	5 cm 20° 5 cm (i) State which test you would use to show that these two	(i)
[3]	triangles are congruent. (ii) Find the value of the pronumeral, correct to 2 decimal places.	
(d)	ABCD is a rectangle with sides 6 cm and 8 cm. AX and CY are drawn perpendicular to BD. Find the length of XY. 6 cm	
[3]		
(e)	A card is drawn at random from a regular pack of 52 playing cards. State the probability that it is: (i) Red (ii) a spade (iii) a king (iv) a red ace (v) either a seven or a black queen	(i) (ii) (iii)
[5]		(iv) (v)

Question 4 (18 Marks)

		Answers
(a)	Use the diagram to answer the following:	
	 	•
	M	
	K	
	x	
	H E	. '
	J G	*
	 	
	(i) Find the gradient of HD.	(i)
	(ii) Find the gradient of FH.	(ii)
	(iii) Find the gradient of HM.	(iii)
	(iv) Find the length of AK (as a surd).	(iv)
	(v) Find the mid point of LF	(v)
	(vi). Write the equation of the line FH.	(vi)
[6]		·
(b)	Anita is five times as old as her son Bill. In fifteen years time Anita will only be twice as old as Bill. Find their present ages.	
[2]		
(c)	Factorise the following expression completely:	
ž.	$x^2 - y^2 + 5x - 5y$	
	. , , , , , , , , , , , , , , , , , , ,	
raz		5.
[2]		L.:

		Answers
(d)	The diagram below is a rhombus.	
	A B B	(i)
	(i) Prove that the diagonals bisect the angles at the vertices.	
	(ii) Hence, show that the diagonals are perpendicular.	(ii)
	Give clear reasons for each step.	
[5]		·
(e)	Solve $\frac{2a+3}{2} - \frac{a-2}{3} = \frac{a-1}{4}$	
[2]	· · ·	
(e)	Make x the subject of the formula $y = \frac{x+1}{x-1}$.	
[1]		

Question 5 (18 Marks)

		Answers
(a)	Simplify, and express with rational denominator:	
	$\frac{1}{\sqrt{5}-\sqrt{3}} - \frac{1}{\sqrt{7}+\sqrt{5}}$	
	$\sqrt{5}-\sqrt{3}$ $\sqrt{7}+\sqrt{5}$	
[2]		
(b)	The Venn diagram shows the	
	papers (Herald, Tele, Mx) read by a class of 30 boys. A boy is	
	chosen at random. State the	*
	probability that:	(i)
	(i) He reads the Herald (ii) He reads the Tele and	(ii)
	Mx, but not the Herald	()
	(iii)He reads exactly two	(iii)
	papers (iv) He reads no paper	(iv)
[4]	(17) The Tollido II o pupor	(11)
(c)	A canoeist paddles due west for 1.5 km, then turns due south and	
	covers a further 800 m. How far (to the nearest metre) and in what direction (true bearing, nearest degree) must she travel to return	Distance
	directly to her starting point?	Distance
		Bearing
[2]		
[2] (d)	Calculate the area of a right-angled triangle with hypotenuse 8 cm,	
	and an angle of 50°, correct to 2 decimal places.	
		,
[2]		
(e)	Solve this set of equations simultaneously:	<i>x</i> =
	3x-y=11	
	3x - y = 11 $x + y = 1$	
		<i>y</i> =
[2]		
(f)	From a lighthouse 70 m above sea level a ship is sighted 1.2 km out	
	to sea. What is the angle of depression from the lighthouse to the ship? (Answer to the nearest minute.)	
	simp (paiswer to the hearest minute.)	
,	· '	
[2]		

		Answers
(g)	Simplify $\frac{x^2 + 2x - 8}{x^2 + 8x + 16}$.	
[2]		
(h)	Sketch the solution set of the inequations on separate number lines.	4
	(i) $2x-3 < 5$	
	$(ii) -2(3-2x) \le 4$	
[2]	·	

Question 6 (18 Marks)

(a)	The bases of two ladders are the same distance from the base of a vertical wall. The longer ladder is 15 m long, and makes an angle of 58° with the ground. If the shorter ladder is 12.6 m long, what angle does it make with the ground? (Nearest degree)	
	·	
[2]		1.
(b)	Find the general form equations of the lines: (i) Parallel to the line $3x+4y-2=0$ and passing through the point (-3, 4).	(i)
	(ii) Perpendicular to the line $3x + y = 4$ and with x-intercept at -3.	(ii)
[4]		•
(c)	By the use of an appropriate construction, calculate the area of this	
	triangle, correct to one decimal place. 12cm 12cm	
[2]		

		Answers
(d)	A British 50 pence piece is based on a regular heptagon (7 sides). Find the size of the internal angles.	
[1]		
(e)	On the number plane below sketch the lines $3x - 2y = 6$ and $y = -\frac{1}{2}x + 3$.	
	↑	
	, † 	
	 	
	+	
[2]		
(f)	Use either the elimination method or the substitution method to solve the following system of simultaneous equations:	
	7x+3y-4=0 $ 5x+2y-3=0$	
[2]		

Question 7 (18 Marks)

		Answers
(b)	The figure is a cube of side 6 cm. P_ C	
	(i) Find the length of the body diagonal CE. (Correct to 2 d.p.)	(i)
	(ii) Find the angle <i>CEG</i> to the nearest minute.	(ii)
		·
[4]		
(c)	ABC is any triangle, CD and Y are the midpoints of respectively.	is an altitude, and X of AC and BC
	Prove DXCY is a kite.	
[4]		

This is the end of the paper.

Use this space if you wish to **REWRITE** any answers Clearly *indicate* the **QUESTION** number.

Question	
	• •
	·
٠	

Use this space if you wish to REWRITE any answers

Clearly indicate the QUESTION number.

Question	
*	
	•
1	
	l l
-	
	•
4	
	·

Use this space if you wish to REWRITE any answers

Clearly indicate the QUESTION number.

Question	
	· .
· · · · · · · · · · · · · · · · · · ·	

SBHS-Yr9 Yrly 2009 Solutions

Question 1. (18 marks)

		Answers
(a)	Find, correct to 4 decimal places:	(i) O·7238
[2]	(i) sin 46°22' (ii) tan 84°12'	(ii)9·8448
(b)	Express 0.0064045 in scientific notation, correct to four significant figures.	6.405×10-3
[1]		
(c)	Arrange this set of numbers in order, smallest to largest: $ \begin{cases} 1, \frac{\pi}{7}, \frac{\pi}{2}, \sqrt{3}, (0.66667)^{-1} \end{cases} $	0.6667 ⁻¹ 11/4
[2]	, , ,	(i) 25°51'
(d)	In each case find the acute angle θ correct to the nearest minute:	_
[2]	(i) $\cos \theta = 0.9$ (ii) $\tan \theta = 2.5$	(ii)68°121
(e)	Express $\sqrt{45} - \sqrt{20}$ as a simple surd.	
[2]	$\sqrt{9 \times 5} - \sqrt{4 \times 5} = 3\sqrt{5} - 2\sqrt{5} =$ Simplify the following expression:	V5
(f) [2]	Simplify the following expression: $\frac{6(xv^2)^4}{(3x^3y)^2} = \frac{6x^4y^8}{9x^6y^2} =$	246 3x2
(g)	Express in simplest surd form	
	(i) $2\sqrt{75} - 3\sqrt{48} = 2 \times 5\sqrt{3} - 3 \times 4\sqrt{3} = 10\sqrt{3} - 12\sqrt{3} = 10\sqrt{3} = 10\sqrt{3} = 10\sqrt{3} = 10\sqrt{3} = 10\sqrt{3} = 10\sqrt{3} = $	(i) -2√3
	(ii) $\frac{6\sqrt{2}\times\sqrt{6}}{4\sqrt{3}} = \frac{3\sqrt{2}\times\sqrt{2}}{2}$	(ii) 3
[2]		·
(h)	Expand and simplify $(3x-2)-2(x+2)$.	
[2]	3x-2-2x-4=	2-6
(i)	At a Sydney Swans match in Sydney there were five men to every two women. If 31 514 fans attended, how many men were there? $31514 \times 5 =$	22 510

		Answers
(j)	Solve for x:	
	4(x+2)-3(x-1)=23	
	4x+8-3x+3=23	x = 12
[2]	x + 11 = 23	

Question 2. (18 marks)

(a)		osen at random from probability that the le	a the word <i>KATOOMBA.</i> etter is:	(i)
	(i)	A (ii) ac	onsonant (iii) Z	(ii)
	(1)	, ,	omonant (m) 21	(iii)
[3]				
(b)	Factorise con	mpletely:	:	
	(i)	$9ab^2 - 6a^2b$	· ·	(i)
	(ii)	$4y^2 - 36$		(ii)
[3]				
(c)	of the closed	me and surface area rectangular prism, rements are in	2 10	Volume =
[4] (d)	Factorise			
(u)	(i)	x^2-6x+8		(i)
	(ii)	$8x^2 + 18x - 5$	•	(ii)
[4]		•		
(e)	Find x, correct places.	ct to 3 decimal	x 42°	
[2]			10	

Question 2. (18 marks) A letter is chosen at random from the word KATOOMBA What is the probability that the letter is: a consonant (iii) Z Factorise completely: [3] 3 (2) Find the volume and surface area $v_{\text{olume}} = |00 \text{ cm}|$ $s_{\text{A}} = 2 \times 2 \times 5 + 2 \times 5 \times 10$ $+2 \times 2 \times 10 = |60 \text{ cm}|^{2}$ of the closed rectangular prism, where measurements are in centimetres. [4] (d) Factorise _40 +18 Find x, correct to 3 decimal places. 10 [2]

	18 km = 60 mins	
	$\frac{18}{10}$ km = 2 mins	
(f)	A portain guad april 101 7	Answers
(1)	A certain quad scull races at 18 km/hr. (i) How far will it go in 2 minutes?	(i) 3 km (0.6 km)
[2]	(ii) How long, to the nearest second, will it take to race 1100 m? $1 \text{ km} = \frac{60}{18}$ mins	(ii) 220 seconds or 3 mins 40 seconds

		Answers
(f)	A certain quad scull races at 18 km/hr.	
	(i) How far will it go in 2 minutes?	(i)
	(ii) How long, to the nearest second, will it take to race 1100 m?	(ii)
[2]		

Question 3 (18 Marks)

(a)	Two ordinary dice (6 faces) are rolled, and the uppermost faces noted. (i) Use a grid or table to show all possible outcomes. (ii) What is the probability of a double? (iii) What is the probability that the sum is 7 or 11?	(ii) S1 = 2
[4]		
(b)	Consider the line with equation $2x-5y+10=0$ (i) State the gradient of the line. (ii) State the y-intercept of the line. (iii) State the x-intercept of the line.	(i) 2 (ii) 2 (iii) -5.

-4-

Question 4 (18 Marks)

		Answers
(a)	Use the diagram to answer the following:	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	K C	
	C L B	
	(lex)	,
	1 5 A 5	
		7
	(i) Find the gradient of HD.	(i) <u></u>
		4
	λ. η. .	3
	(ii) Find the gradient of FH.	(ii) $-\frac{2}{4}$
		+
	(iii) Find the gradient of HM.	(iii) undefined
	(MI) I fild the gradient of The.	(111)
		, <u></u>
	(iv) Find the length of AK (as a surd).	(iv) 355
	(v) Find the mid point of <i>LF</i>	(v) (-3/-1)
	(v) That the find point of Er	(N) C 21 1
	•	
	(vi). Write the equation of the line FH.	(vi)
	4+4 3	
	3>43 = 44-4	
F67		三3, 王
[6]	3x+4y+7=0 y	= 2 1 - 1
(b)	Anita is five times as old as her son Bill. In fifteen years time Anita	
(5)	will only be twice as old as Bill. Find their present ages.	
		7
	let Bill's age be or, Anifa = 5 x	25,5
	5)(+15= 2)(+30)(=5	
[2] (c)	77 11 (21)	<u> </u>
(c)	Factorise the following expression completely:	
	$x^2 - y^2 + 5x - 5y$	
	(nety)(x-y) + 5(x-y) = (x+y+5)	V .
[2]	(x+9+5)	1()(~Y)

		Answers
(d)	The diagram below is a rhombus.	
	A B 35 B	(i)
	(i) Prove that the diagonals bisect the angles at the vertices.	From (i) we have Four congruent Δs (ii) $\angle A = B + \angle B = C + \angle C = D$
	(ii) Hence, show that the diagonals are perpendicular.	(ii) \(A = B + \(B = C + \(C = D \) + \(\) = 360°
	Give clear reasons for each step.	(angles ati
[5]		. ' diagonals are
(e)	Solve 20+3 0-2 0-1	5a = -29 L
	$\frac{2a+3}{2} - \frac{a-2}{3} = \frac{a-1}{4}$	-29
	6(2a+3)-4(a-2)=3a-3	α=
[2]	12a+18-4a+8 = 3a-3	
(e)	Make x the subject of the formula $y = \frac{x+1}{x-1}$.	
	>cy-y-x-1=0 = x(1-y)=-	4-1
	y = -y - 1	1-1
[1])(= -	
	, , , , , , , , , , , , , , , , , , , ,	-9
	WOW.	
	= 4	+ (
	y	-)

Question 5 (18 Marks)

(a)	Simplify, and express with rational denominator:	1	7
	and oxpress with rational denormator.	/	
	$\frac{1}{\sqrt{5}-\sqrt{3}} \frac{1}{\sqrt{7}+\sqrt{5}} = \left(\frac{1}{\sqrt{5}-13} \times \frac{\sqrt{5}+13}{\sqrt{5}+13}\right) = \frac{1}{\sqrt{5}-13} \times \frac{1}{\sqrt{5}+13}$	1/1-217	1- 15
	√5-√3 √7+√5 √5-√2 (E+15)	1/5 /5 /-	
	2 F. F F	1117-417	1-15
[2]	=215+13-17		-
[2]			
(b)	The Venn diagram shows the		
	papers (Herald, Tele, Mx) read H 5		
	by a class of 30 boys. A boy is		
	chosen at random. State the	16 8	
	probability that: 6×4	(i) 25 - 15.	
	(i) He reads the Herald	,	
	(ii) He reads the Tele and	(ii) 4===================================	
	Mx, but not the Herald		
	(iii)He reads exactly two	(iii) 15/30= /Z.	
	papers	150 1	
Γ <i>α</i> 3	(iv) He reads no paper	(iv) 5/20=1/6	
[4] (c)	A consist all a	, 00 , 0	
(e)	A canoeist paddles due west for 1.5 km, then turns due south and	1	
	covers a further 800 m. How far (to the nearest metre) and in what	1700	<u>ا</u>
	direction (true bearing, nearest degree) must she travel to return directly to her starting point?	Distance 700r	11.
	1500 : $\chi = \sqrt{800^2 + 1500^2} = 1700$	h	D
		Bearing 062	ſ
80	ρρος. tanα=1500 : α=62°		
[2]	100 · 100 ·		
(d)	Calculate the area of a right-angled triangle with hypotenuse 8 cm,		
	and an deale of 500 comment to 0 designate to the		
	x = 8cos 50 y= 8sin 50.	15.71	
_		15.76c	(Y)
	$A = \pm xy = \pm (8\cos 50)(8\sin 50)$		
[2]			
(e)	Solve this set of equations simultaneously:	2	
	3x-y=11 x+y=1 3x-(1-x)=11.	$x=$ \bigcirc	
	3x-y=11	_	
	$x+y=1$ $(2-x)^{-1}$.		
		ソ ニ ,ー つ	
1	d~=12	· \(\alpha\)	
'a1			
[2]	4x=12 x=3 $y=-2$.		
(f)	From a lighthouse 70 m above sea level a ship is sighted 1.2 km out		
	to sea. What is the angle of depression from the lighthouse to the		
	ship? (Answer to the nearest minute.)	j	
	KX- don N= 70 = 3020		
	70 70		
2]	13 (d)		
	1200		
	70 1200 SIN X - 10 = 3°21'		
	181290 SID X- 10= 3 21		
-	***		

		Answers
(g)	Simplify $\frac{x^2+2x-8}{x^2+8x+16} = (x-2)x+4$	$\begin{array}{c c} x - 2 \\ \hline x + 4 \end{array}$
[2]		
(h)	Sketch the solution set of the inequations on separate number lines. (i) $2x-3<5$, $2x<8$, $3c<4$.	3 4 5
	(i) $2x-3<5$, $2x-3>5$	2 5/2 3.
[2]	(ii) $-2(3-2x) \le 4$ $7 - 2x > -5$ $3 - 2x > 2$ $x \le 5/2$	2725.

Question 6 (18 Marks)

(a)	The bases of two ladders are the same distance from the base of a vertical wall. The longer ladder is 15 m long, and makes an angle of 58° with the ground. If the shorter ladder is 12.6 m long, what angle does it make with the ground? (Nearest degree)	
[2]	·	
(b)	Find the general form equations of the lines: (i) Parallel to the line $3x+4y-2=0$ and passing through the point (-3, 4).	(i)
	(ii) Perpendicular to the line $3x + y = 4$ and with x-intercept at -3.	(ii)
[4]		
(c)	By the use of an appropriate construction, calculate the area of this triangle, correct to one decimal place. 12cm 150° 12cm	
[2]		

		Answers
(g)	Simplify $\frac{x^2+2x-8}{x^2+8x+16}.$	
[2]		
(h)	Sketch the solution set of the inequations on separate number lines.	· · · · · · · · · · · · · · · · · · ·
	(i) $2x-3<5$,
	(ii) $-2(3-2x) \le 4$	
[2]		

Question 6 (18 Marks)

(a)	The bases of two ladders are the same distance from the base of a vertical wall. The longer ladder is 15 m long, and makes an angle		
	of 58° with the ground. If the shorter ladder is 12.6 m long, what angle does it make with the ground? (Nearest degree)		
	Con 58= $\frac{x}{15}$ $\Theta = \frac{x}{12.6}$	12.9	
	X = 15 Co158 = 7.95 = 50.8°	2	
[2]		51°	
(b)	Find the general form equations of the lines: (i) Parallel to the line $3x+4y-2=0$ and passing through the point (-3, 4). $m_1 = m_2 = -3$	(i) 3x+4y-7=0	
	(ii) Perpendicular to the line $3x+y=4$ and with x-intercept at -3. $m_1 = -3$ $m_2 = \frac{1}{2}$	(ii)	
[4]	$y = \frac{1}{3}(x+3)$	x-3y+3=0	
(c)	By the use of an appropriate construction, calculate the area of this triangle, correct to one decimal place. 12cm	A = 5.07×10.87	
	Sin 65: h	= 55.18	
[2]	h = 12 Sin 65 = 10.88 Cos 65 = 72 765 77	= 55.2 cm (1 d.p.

		Answers
(d)	A British 50 pence piece is based on a regular heptagon (7 sides). Find the size of the internal angles.	
	7 Sides - 5 than les	1287
	15mm 5 x 180 = 900 -7	
[1]		
(e)	On the number plane below sketch the lines $3x-2y=6$ and	
	$y = -\frac{1}{2}x + 3.$	
	A	
	↑ 1	
	†	
	$\int_{3x-2y}^{3x-2y} = 6$,
	320 -0	
		•
	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	+/	
	†/	,
	<u>/</u>	
	/	
[2]	•	
(f)	Use either the elimination method or the substitution method to	
(1)	solve the following system of simultaneous equations:	
		(1,-1)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (5 1)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	D 7 + 3y - 4=0 Y=-7	
[2]		

Question 7 (18 Marks)

		Answers
(a)		
	↑ Y	
	(70)	
	C(0, c)	
	46/20	
	A(a,0) $B(b,0)$ X	
	A(a,0) $B(b,0)$	
	The diagram represents any triangle. An altitude of a triangle	
	passes through a vertex and is perpendicular to the opposite side, produced if necessary.	
	1 m	
	(i) Sketch the altitudes BM (M lies on AC) and AN (N lies on	(1)
	<i>BC</i>).	
	(ii) Write down the gradients of BM and AN.	(ii)
-	MAC = - = = MBM = = =	
	Mac = = = Man = =	
	$M_{BC} = \frac{1}{2}$ \Rightarrow $M_{BC} = \frac{1}{2}$ (iii) State the equations of the lines BM and AN .	(iii)
	BM: Y= &(x-b)	
	AN: 4= = (x-a)	
	(iv) Find the co-ordinates of the point of intersection of the	(iv)
	altitudes BM and AN.	
	$\frac{a}{c}(x-b) = \frac{b}{c}(x-a) \qquad \qquad$	(3)
	anc-ab=brc-ab	
[10]	(v) What geometric result is proved by the above?	(v)
	The altitudes of a triangle are	
	concurrent.	

pairs of adjacent sides equal.

BDCM Rect. CY = YB Since CB = pm (diag) Similarly CX = XD