A3.8 – Sketching regions

The quickest and easiest way to graph the solution of a linear inequation, is to plot its intercepts and then draw the line passing through these points, then test a point for the required region or half-plane.

For the linear inequation: $3x + 2y \le 6$

- place your pen or finger over the term containing y (set y = 0) 3x + 4 = 6
- this gives you the *x*-intercept x = 2
- 2^{nd} , place your pen or finger over the term containing x (set x = 0) 3 + 2y = 6
- this gives you the y-intercept y = 3

- 3rd Then simply get your ruler and draw a line through these two points.
- 4th Now choose a convenient point, e.g. (0,0) to test the inequation above i.e. $3(0)+2(0) \le 6$ is true, therefore shade the lower half plane.

Draw the graphs of the solutions to the following linear inequations:

(1)
$$2x + y \ge 8$$

(2)
$$x + 3y \le 6$$

(3)
$$2x - y > 8$$

$$(4) 3x - 4y < 12$$

$$3x - 4y < 12$$
 (5) $y = 2x - 5$

(6)
$$\frac{x}{3} - y = 2$$

(7) Check whether the following pairs of coordinates (1,5), (5,3), (-1,4), (7,-2), (0,5), (9,5) would lie in the shaded region given by x + y < 7.

(8) Graph the regions formed by inequalities such as x + y < 7, y < 2(x - 3) and $y \ge 0$.

Page 15:

$$(2) x + 3y \le 6$$

(3)
$$2x - y > 8$$

Page 16:

4)
$$3x - 4y < 12$$

(5)
$$y = 2x - 5$$

(6)
$$\frac{x}{3} - y = 2$$

(7) Only points (5,3) and (9,5) would not lie in the region.

