1	ACF	Examin	ation
建設 / 15	MUL	LAGIIIIII	auvii

Student Name	

2014 YEAR 12 HALF YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 1 hour
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 6-7

Total marks - 35

Section I

5 marks

- Attempt Questions 1-5
- Allow about 8 minutes for this section

Section II

30 marks

- Attempt Questions 6-7
- Allow about 52 minutes for this section

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_{x} x$, x > 0

Section I

5 marks Attempt Questions 1 - 5 Allow about 8 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

- 1 Which of the following is an expression for $\int x\sqrt{4-x^2} dx$? Use the substitution $u = \sqrt{4-x^2}$.
 - (A) $-\frac{(4-x^2)^3}{3} + C$
 - (B) $\frac{\left(4-x^2\right)^3}{3}+C$
 - (C) $-\frac{\left(4-x^2\right)^{\frac{3}{2}}}{3}+C$
 - (D) $\frac{\left(4-x^2\right)^{\frac{3}{2}}}{3}+C$
- 2 A piece of hot aluminium is placed in a room with a surrounding air temperature of 15°C and allowed to cool. It loses heat according to Newton's law of cooling, $\frac{dT}{dt} = -k(T-A)$ where T is the temperature of the aluminium in degrees Celsius at time t minutes, A is the surrounding air temperature and k is a positive constant. After 5 minutes the temperature of the aluminium is 75°C, and after a further 3 minutes it is 45°C. What is the value of k in the above equation?
 - (A) $k = 3\log_e 0.5$
 - (B) $k = 3\log_e 2$
 - (C) $k = \frac{\log_e 0.5}{3}$
 - (D) $k = \frac{\log_e 2}{3}$

- 3 What is the exact value of the definite integral $\int_{\frac{\pi}{2}}^{\pi} 2(\sin^2 x + x) dx$?
 - (A) $\frac{3\pi^2 + \pi + 2}{4}$
 - $(B) \quad \frac{3\pi^2 + \pi}{4}$
 - (C) $\frac{3\pi^2 + 2\pi + 2}{4}$
 - (D) $\frac{3\pi^2 + 2\pi}{4}$
- 4 The function $f(x) = \log_e x \sin x$ has a real root between 2 and 3. Let x = 2 be a first approximation to the root. What is the second approximation to the root using Newton's method?
 - (A) 2.235
 - (B) 2.236
 - (C) 2.663
 - (D) 2.664
- 5 What is the indefinite integral for $\int (\cos^2 x + 2 \sec^2 x) dx$?
 - (A) $\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + C$
 - (B) $\frac{1}{2}x \frac{1}{4}\sin 2x + \tan x + C$
 - (C) $\frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$
 - (D) $\frac{1}{2}x \frac{1}{4}\sin 2x + 2\tan x + C$

Marks

2

3

3

1

3

3

Section II

30 marks Attempt Questions 6' 7

Allow about 52 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 6 (15 marks)

Marks

(a) Use the substitution
$$u = x + 1$$
 to evaluate $\int_0^3 \frac{x - 2}{\sqrt{x + 1}} dx$.

3

3

$$1+5+9+...+4n-3=2n^2-n$$

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} \sin^2 3x dx$$
.

2

2

(d) Solve the equation
$$2e^{-x} - x = 0$$
, correct to two decimal places, given $x = 0.8$ is an approximate root.

Verify that $T = T_0 + Ae^{-kt}$ satisfies the above equation.

A cup of hot tea is cooled from 100°C to 70°C after 10 minutes in a room where the temperature is 20°C. How much longer would it take

Prove $\frac{\sec^2 x}{\tan x} = \frac{\csc x}{\cos x}$. 1 Use the substitution $u = \tan x$ to find the exact value of this integral 2

$$4^n > 2n + 1$$

(f) Use the substitution
$$u = \log_e x$$
 to evaluate $\int \frac{1}{x(\log_e x)^2} dx$.

where *t* is the time in minutes and *k* is a positive constant.

(d) Newton's law of cooling states that when an object at temperature $T^{\circ}C$ is

(a) Let 3.5 be a first approximation to the root of the equation $x^3 = 50$. Apply

(b) Prove by mathematical induction that $n^3 + 2n$ is divisible by 3 for all

Newton's method once to obtain a better approximation to the root. Answer

(c) Find the exact value of $\int_{-1}^{1} \sqrt{4-x^2} dx$, using the substitution $x = 2\sin\theta$.

for the cup of tea to cool down to 40°C?

loss is given by the equation

Question 7 (15 marks)

correct to 3 significant figures.

positive integers n.

placed in an environment at temperature $T_0^{\circ}C$, the rate of the temperature

$$\frac{dT}{dt} = -k(T - T_0)$$

(e) Use the principle of mathematical induction to prove that for all positive integers n:

End of paper

ACE Examination 2014

HSC Mathematics Extension 1 Half Yearly Examination

Worked solutions and marking guidelines

Sectio	n I	
	Solution	Criteria
1	$u = \sqrt{4 - x^2}$ $\frac{du}{dx} = \frac{1}{2} (4 - x^2)^{-\frac{1}{2}} - 2x$ $du = \frac{-x}{(4 - x^2)^{\frac{1}{2}}} dx$ $-(4 - x^2)^{\frac{1}{2}} du = x dx \text{ or } -u du = x dx$ $\int x \sqrt{4 - x^2} dx = \int u \times -u du$ $= \int -u^2 du$ $= -\frac{u^3}{3} + C = -\frac{\left(4 - x^2\right)^{\frac{3}{2}}}{3} + C$	1 Mark: C
2	$T = A + Be^{-kt} $ satisfies the equation $\frac{dT}{dt} = -k(T - A)$ $A = 15 $ (surrounding air temperature). Also $t = 5$ and $T = 75$ $T = 15 + Be^{-kt}$ $75 = 15 + Be^{-kx}5$ $Be^{-5k} = 60 $ (1) $Also t = 8 and T = 45$ $T = 15 + Be^{-kt}$ $45 = 15 + Be^{-kx}8$ $Be^{-8k} = 30 $ (2) $Eqn (1) \div (2)$ $Be^{-5k} = \frac{60}{30}$ $e^{3k} = 2$ $3k = \log_e 2$ $k = \frac{\log_e 2}{3}$	1 Mark: D

1

3	$\int_{\frac{\pi}{2}}^{\pi} 2(\sin^2 x + x) dx = 2 \int_{\frac{\pi}{2}}^{\pi} \left[\frac{1}{2} (1 - \cos 2x) + x \right] dx$ $= 2 \left[\frac{1}{2} x - \frac{1}{4} \sin 2x + \frac{x^2}{2} \right]_{\frac{\pi}{2}}^{\pi}$ $= 2 \left(\frac{\pi}{2} - \frac{\sin 2\pi}{4} + \frac{\pi^2}{2} \right) - 2 \left(\frac{\pi}{4} - \frac{\sin \pi}{4} + \frac{\pi^2}{8} \right)$ $= 2 \left[\frac{\pi}{2} + \frac{\pi^2}{2} - \frac{\pi}{4} - \frac{\pi^2}{8} \right]$ $= \frac{3\pi^2}{4} + \frac{\pi}{2} = \frac{3\pi^2 + 2\pi}{4}$	1 Mark: D
4	$f(x) = \log_e x - \sin x \qquad f'(x) = \frac{1}{x} - \cos x$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 2 - \frac{\log_e 2 - \sin 2}{\frac{1}{2} - \cos 2}$ $= 2.23593406 \approx 2.236$	1 Mark: B
5	$\int (\cos^2 x + 2\sec^2 x) dx = \int \left(\frac{1}{2}(1 + \cos 2x) + 2\sec^2 x\right) dx$ $= \frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$	1 Mark: C
Section	ıII	
6(a)	u = x+1 $x = 3$ then $u = 4du = dx$ $x = 0$ then $u = 1$	3 Marks: Correct answer.
	$\int_{0}^{3} \frac{x-2}{\sqrt{x+1}} dx = \int_{0}^{4} \frac{u-3}{\sqrt{u}} du$ $= \int_{0}^{4} (u^{\frac{1}{2}} - 3u^{-\frac{1}{2}}) du$ $= \left[\frac{2u^{\frac{3}{2}}}{3} - 6u^{\frac{1}{2}} \right]_{1}^{4}$ $= \frac{2}{3} (8-1) - 6(2-1)$ $= -\frac{4}{3}$	2 Marks: Makes significant progress towards the solution 1 Mark: Calculates $\frac{du}{dx}$ and changes the limits.

6(b)	G. 1 D. 1	3 Marks: Correct
1 0(0)	Step 1: To prove the statement true for $n=1$	answer.
	LHS=1 RHS= $2(1)^2-1=1$	11011
	Result is true for $n=1$	2 Marks: Proves
		the result true for
	Step 2: Assume the result true for $n = k$	n=1 and
	$1+5+9++4k-3=2k^2-k$	attempts to use the result of
	To prove the result is true for $n = k + 1$	n = k to prove
	$1+5+9++4k-3+4(k+1)-3=2(k+1)^2-(k+1)$	the result for
	LHS = $1+5+9++4k-3+4(k+1)-3$	n=k+1.
	$=2k^2-k+4(k+1)-3$	
	$=2k^2+4k+2-k-1$	1 Mark: Proves
	$=2(k^2+2k+1)-(k+1)$	the result true for
	$=2(k+1)^2-(k+1)$	n=1.
	= RHS	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Result true by principle of mathematical induction.	
6(c)	$\int_0^{\frac{\pi}{2}} \sin^2 3x dx = \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 6x) dx$	2 Marks: Correct answer.
	$= \frac{1}{2} \left[x - \frac{1}{6} \sin 6x \right]_0^{\frac{\pi}{2}}$ $= \frac{1}{2} \left[\left(\frac{\pi}{2} - \frac{1}{6} \sin 3\pi \right) - \left(0 - \frac{1}{6} \sin 0 \right) \right]$	1 Mark: Applies double angle trig identity.
	$=\frac{\pi}{4}$	
6(d)	$f(x) = 2e^{-x} - x$ and $f'(x) = -2e^{-x} - 1$	2 Marks: Correct
	$f(x_0)$	answer.
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	1 Mark: Shows
	$=0.8-\frac{2e^{-0.8}-0.8}{-2e^{-0.8}-1}$	some
	$\frac{-0.82e^{-0.8} - 1}{-2}$	understanding of
	= 0.85196192	Newton's method
	≈ 0.85	

6(e) (i)	$LHS = \frac{\sec^2 x}{\tan x}$	1 Mark: Correct answer.
	$=\frac{1}{\cos^2 x} \div \tan x$	
	$= \frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$	
	_	
	$=\frac{1}{\cos x} \times \csc x$	
	$=\frac{\csc x}{\cos x} = \text{RHS}$!
6(e) (ii)	$u = \tan x$ $u = \tan \frac{\pi}{3} = \sqrt{3}$ $u = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ $du = \sec^2 x dx$	2 Marks: Correct answer.
	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos ecx}{\cos x} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$	
	$=\int_{\frac{\pi}{6}}^{\sqrt{3}}\frac{1}{u}du$	1 Mark: Recognises the
	$= \left[\log_e u\right]_{\frac{1}{L}}^{\frac{1}{L}}$	use of part (i) or makes progress
	٧٥	in the substitution.
	$=\log_e \sqrt{3} - \log_e \frac{1}{\sqrt{3}}$	substitution.
	$=\log_e 3$	
6(f)	$u = \log_e x$ and $du = \frac{1}{x} dx$	2 Marks: Correct answer.
	$\int \frac{1}{x (\log_e x)^2} dx = \int \frac{1}{u^2} du$	1 Mark: Sets up the integration
	$=-u^{-1}+C$	and shows some understanding.
	$= -\frac{1}{\log_e x} + C$	
7(a)	$f(x) = x^3 - 50$ and $f'(x) = 3x^2$	2 Marks: Correct answer,
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	
		1 Mark: Shows some
	$=3.5 - \frac{3.5^3 - 50}{3 \times 3.5^2}$	understanding of Newton's method
	= 3.693877551 ≈ 3.69	
		_1

7(b)	Step 1: To prove the statement true for $n=1$	3 Marks: Correct
	$1^3 + 2 \times 1 = 3$ (Divisible by 3)	answer.
	Result is true for $n=1$	2 Marks: Proves
		the result true for
	Step 2: Assume the result true for $n = k$	n=1 and
	$k^3 + 2k = 3P \text{ where } P \text{ is an integer} $ (1)	attempts to use the result of
	To prove the result is true for $n = k + 1$	n = k to prove
	$(k+1)^3 + 2(k+1) = 3Q$ where Q is an integer.	the result for
	LHS = $(k+1)^3 + 2(k+1)$	n=k+1.
	$= k^3 + 3k^2 + 3k + 1 + 2k + 2$	
	$=3k^2+3k+3+k^3+2k$	1 Mark: Proves
	$=3(k^2+k+1)+(k^3+2k)$	the result true for
	$=3(k^2+k+1)+(3P) \text{ from } (1)$	n=1.
	$= 3 \times (k^2 + k + 1 + P)$	
	=3Q	
	= RHS	
	Q is an integer as P and k are integers.	
	Result is true for $n = k + 1$ if true for $n = k$	
7()	Step 3: Result true by principle of mathematical induction.	
7(c)	$x = 2\sin\theta$, $\frac{dx}{d\theta} = 2\cos\theta$, $dx = 2\cos\theta d\theta$	3 Marks: Correct answer.
	When $x = 1$ $1 = 2\sin\theta$	
	$\sin \theta = \frac{1}{2}$ or $\theta = \frac{\pi}{6}$	2 Marten Malean
	2 6	2 Marks: Makes significant
		progress towards
	When $x = -1$ $-1 = 2\sin\theta$	the solution
	$\sin \theta = -\frac{1}{2} \text{ or } \theta = -\frac{\pi}{6}$	
	2 0	1 Mark: Sets up
	A Total Carlot	the integration by
	$\int_{-1}^{1} \sqrt{4 - x^2} dx = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{4 - (2\sin\theta)^2} \times 2\cos\theta d\theta$	finding dx and
	, , , , , , , , , , , , , , , , , , ,	adjusting the limits.
	$= \int_{\frac{\pi}{6}}^{6} 2\sqrt{1 - \sin^2 \theta} \times 2\cos \theta d\theta$	**********
	π_	
i	160 00 010	
	$= \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} 2\cos\theta \times 2\cos\theta d\theta$	
	$= \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} 2\cos\theta \times 2\cos\theta d\theta$ $= 4 \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \cos^2\theta d\theta$	

,		
	$=4\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\frac{1}{2}(1+\cos 2\theta)d\theta$	
	$=2\left[x+\frac{1}{2}\sin 2\theta\right]^{\frac{\pi}{6}}_{\frac{\pi}{6}}$	
	$=2\left[\left(\frac{\pi}{6}+\frac{1}{2}\sin\frac{\pi}{3}\right)-\left(-\frac{\pi}{6}+\frac{1}{2}\sin-\frac{\pi}{3}\right)\right]$	
	$=2\left[\frac{\pi}{6} + \frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{\pi}{6} - \frac{1}{2} \times -\frac{\sqrt{3}}{2}\right]$	
	$=2\left[\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right]$	
	$=\frac{2\pi}{3}+\sqrt{3}$	
7(d) (i)	$T = T_0 + Ae^{-kt} \qquad \text{or } Ae^{-kt} = T - T_0$ $\frac{dT}{dt} = -kAe^{-kt}$	1 Mark: Correct answer.
	$=-k(T-T_0)$	
7(d) (ii)	Initially $t = 0$ and $T = 100$, $T_0 = 20$	3 Marks: Correct answer.
	$T = T_0 + Ae^{-kt}$	
	$ \begin{array}{l} 100 = 20 + Ae^{-k \times 0} \\ A = 80 \end{array} $,
	A = 80	2 Marks: Finds the value of A
	Also $t = 10$ and $T = 70$	and an expression
	$70 = 20 + 80e^{-k \times 10}$	for k.
	$e^{-10k} = \frac{50}{80} = \frac{5}{8}$	1 Mark: Finds the
	$-10k = \log_e \frac{5}{8}$	value of A.
	$k = -\frac{1}{10}\log_e \frac{5}{8}$	
	$=\frac{1}{10}\log_e\frac{8}{5}$	
	= 0.04700036	
	I MA ARABAMAN	I

	We need to find t when $T = 40$	
	$40 = 20 + 80e^{-kt}$	
	$e^{-kt} = \frac{20}{80} = \frac{1}{4}$	
	$-kt = \log_e \frac{1}{4}$	
	$t = -\frac{1}{k} \log_e 0.25$	
	$=-10\frac{\log_e 0.25}{\log_e \frac{8}{5}}$	
	= 29.49539695	
	≈ 29.5 min	
	Time taken to cool down from 70°C to 40°C	
	= 29.5 – 10	
	=19.5 min	
7(e)	Step 1: To prove the statement true for $n=1$	3 Marks: Correct
	$4^1 > 2 \times 1 + 1$	answer.
	Result is true for $n=1$	2 Martin Duran
	Step 2: Assume the result true for $n = k$ $4^k > 2k + 1$	2 Marks: Proves the result true for $n=1$ and attempts to use
	To prove the result is true for $n = k+1$ $4^{k+1} > 2(k+1)+1$	the result of $n = k$ to prove the result for $n = k + 1$.
	> 2k + 3	
	$LHS = 4^{k+1}$	
	$=4\times4^k$	1 Mark: Proves
	$>4\times(2k+1)$ from (1)	the result true for $n=1$.
	> 8k + 4	
	> 2k + 3 (k is a positive integer)	
	= RHS	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Result true by principle of mathematical induction.	