| xI II | ACF | Examin | ations | |-------|-----------------|----------|---------| | 200 | $\neg \cup_{L}$ | LAGIIIII | iations | 2014 YEAR 12 YEARLY EXAMINATION # **Mathematics** ## **General Instructions** - Reading time 5 minutes - Working time 3 hours - Write using black or blue pen - Board-approved calculators may be used - A table of standard integrals is provided at the back of this paper - Show all necessary working in Questions 11-16 ## Total marks - 100 #### Section I 10 marks - Attempt Questions 1-10 - Allow about 15 minutes for this section ## Section II 90 marks - Attempt Questions 11-16 - Allow about 2 hour 45 minutes for this section STUDENT NUMBER/NAME: #### STANDARD INTEGRALS $$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$ $$\int \frac{1}{x} dx = \ln x, \quad x > 0$$ $$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$ $$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$ $$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$ $$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$ $$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$ $$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$ $$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$ $$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$ $$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$ NOTE: $\ln x = \log_e x$, x > 0 ## Section I ## 10 marks ## Attempt Questions 1 - 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1-10 | 1 | What is the primitive of $\frac{2}{x} - \cos x$? | |---|---| |---|---| $$(A) \quad \frac{-2}{x^2} + \sin x + C$$ (B) $$\frac{-2}{x^2} - \sin x + C$$ (C) $$2\ln x + \sin x + C$$ (D) $$2\ln x - \sin x + C$$ 2 What are the values of x for which |4-3x| < 13? (A) $$x < -3 \text{ or } x < \frac{17}{3}$$ (B) $$x > -3 \text{ or } x > \frac{17}{3}$$ (C) $$x > -3 \text{ or } x < \frac{17}{3}$$ (D) $$x < -3 \text{ or } x > \frac{17}{3}$$ 3 What is the simultaneous solution to the equations 2x + y = 7 and x - 2y = 1? (A) $$x = 3$$ and $y = 1$ (B) $$x = -1 \text{ and } y = 9$$ (C) $$x = 2$$ and $y = 3$ (D) $$x = 5 \text{ and } y = 1$$ | | 4 | Factorise | $2x^2 - 7x - 15$ | | |--|---|-----------|------------------|--| |--|---|-----------|------------------|--| (A) $$(2x-3)(x-5)$$ (B) $$(2x+3)(x-5)$$ (C) $$(2x-5)(x-3)$$ (D) $$(2x+5)(x-3)$$ 5 The value of $$\frac{5.79 + 0.55}{\sqrt{4.32 - 3.28}}$$ is closest to: 6 What are the values of p and q given $(3\sqrt{12} + \sqrt{75})(2 + \sqrt{48}) = p + q\sqrt{3}$? (A) $$p = 132$$ and $q = 15$ (B) $$p = 396$$ and $q = 15$ (C) $$p = 132$$ and $q = 22$ (D) $$p = 396$$ and $q = 22$ 7 The line 6x - ky = 8 passes through the point (3,2). What is the value of k? 8 The semi-circle $y = \sqrt{4 - x^2}$ is rotated about the x-axis. Which of the following expressions is correct for the volume of the solid of revolution? (A) $$V = \pi \int_0^2 (4 - x^2) dx$$ (B) $$V = 2\pi \int_0^2 (4 - x^2) dx$$ (C) $$V = \pi \int_0^2 (4 - y^2) dy$$ (D) $$V = 2\pi \int_0^2 (4 - y^2) dy$$ 9 A circle has the equation $4x^2 - 4x + 4y^2 + 24y + 21 = 0$. What is the radius and centre? (A) Centre $(\frac{1}{2}, -3)$ and radius of 2. (B) Centre $(\frac{1}{2}, 3)$ and radius of 2. (C) Centre $(\frac{1}{2}, -3)$ and radius of 4. (D) Centre $(\frac{1}{2}, 3)$ and radius of 4. 10 An infinite geometric series has a first term of 12 and a limiting sum of 15. What is the common ratio? A $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$ ## Section II 90 marks Attempt Questions 11° 16 Allow about 2 hours and 45 minutes for this section Answer each question in the appropriate writing booklet. All necessary working should be shown in every question. ## Question 11 (15 marks) Marks (a) The coordinates of O, D and C are (0,0), (0,4) and (3,0) respectively. Point E lies on CD. Copy the diagram onto your workbook. (i) Show that the equation of CD is 4x+3y-12=0 1 CD. 2 (ii) Equation OE is 3x-4y=0. Explain why OE is perpendicular to CD. (iii) Prove that $\triangle DOE$ is similar to $\triangle OCE$. 2 (iv) Show that $\frac{OE}{DE} = \frac{CE}{OE} = \frac{3}{4}$. _ (v) Find the ratio of the areas of triangles *DOE* and *OCE*. 1 (b) Find the equation of the tangent to the curve $y = \log_e x - 1$ at the point (e, 0). (c) The equation of a parabola is given by $y = x^2 - 2x + 5$. | (i) | Find the coordinates of its vertex. | ; | |-------|---|---| | (ii) | What is its focal length? | | | (iii) | Find the equation of the normal at the point $P(2,5)$. | | (iv) For what values of x is the parabola concave upwards? 1 | Que | estion 12 (15marks) | Marks | |-----|---|-------| | (a) | There are 200 tickets sold in a raffle with only two prizes. These tickets are placed in a bag and two are drawn, one at a time. Once a ticket is drawn it is not placed back in the bag. One boy bought 3 tickets. | | | | (i) What is the probability he wins first prize? | 1 | | | (ii) What is the probability he wins both prizes? | 1 | | | (iii) What is the probability he wins second prize but not first prize? | 1 | | | (iv) What is the probability he does not win a prize? | 1 | | (b) | Differentiate with respect to x . | | | | (i) $e^{3x} \tan x$ | 2 | | | (ii) $\frac{\sin x}{5-x}$ | 2 | | | | | | (c) | Find | | | | (i) $\int \frac{dx}{e^{4x}}$ | 2 | | | (ii) $\int_0^\pi \sec^2 \frac{x}{3} dx$ | 2 | | | | | | (d) | The roots of the equation $2x^2 - x - 15 = 0$ are α and β . Find the value of: | | | | (i) $\alpha + \beta$ | 1 | | | (ii) $\alpha\beta$ | 1 | | | (iii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ | 1 | | Que | Question 13 (15 marks) | | | |-----|------------------------|--|---| | (a) | The si | turn of the firsts n terms of a certain arithmetic series is given by: $S_n = \frac{3n^2 + n}{2}$ | | | | (i) | Calculate S_1 and S_2 . | 1 | | | (ii) | Find the first three terms of the series. | 2 | | | (iii) | Find an expression for the <i>n</i> th term. | 1 | | | | | | | (b) | Let f | $f(x) = x^3 - 3x^2 - 9x + 22$ | | | | (i) | Find the coordinates of the stationary points and determine their nature. | 3 | | | (ii) | Find the coordinates of the point of inflexion. | 2 | | | (iii) | Sketch the graph of $y = f(x)$, indicating where the curve meets the y-axis, stationary points and points of inflexion. | 2 | | | (iv) | For what values of x is the graph of $y = f(x)$ concave down? | 1 | | | | | | | (c) | along | and Bella leave from point O at the same time. Alex travels at 20 km/h a straight road in the direction 085° T. Bella travels at 25 km/h along er straight road in the direction 340° T. | | | | Draw | a diagram to represent this information. | | | | (i) | Show that $\angle AOB$ is 105° where $\angle AOB$ is the angle between the directions taken by Alex and Bella. | 1 | | | (ii) | Find the distance Alex and Bella are apart to the nearest kilometre after two hours. | 2 | Question 14 (15 marks) Marks 2 2 (a) ABCD is a rhombus, BE is perpendicular to AD and intersects AC at F. Copy the diagram onto your workbook. | (i) | Explain why $\angle BCA = \angle DCA$. | 1 | |-------|---|---| | (ii) | Prove that the triangles BFC and DFC are congruent. | 3 | | (iii) | Show that $\angle FBC$ is a right angle. | 1 | | (iv) | Hence or otherwise find the size of $\angle FDC$. | 1 | (b) A scientist grows the number of bacteria according to the equation $$N(t) = Ae^{0.15t}$$ where t is measured in days and A is a constant. - (i) Show that the number of bacteria increases at a rate proportional to the number present. - (ii) When t = 3 the number of bacteria was estimated at 1.5×10^8 . Evaluate A. Answer correct to 2 significant figures. - (iii) The number of bacteria doubles every x days. Find x. Answer correct to 1 decimal place. (c) The speed of a car at intervals of two minutes is shown below. | <i>t</i> (h) | 0 | <u>1</u>
30 | 1
15 | 1/10 | 2
15 | |--------------|---|----------------|---------|------|---------| | ν (km/h) | 0 | 35 | 45 | 50 | 60 | Use Simpson's rule with these five function values to estimate $\int_{0}^{2} v dt$. Answer correct to 3 significant figures. (d) Solve the equation $(\cos x + 2)(2\cos x + 1) = 0$ in the domain $0 \le x \le 2\pi$. ## Question 15 (15 marks) Marks (a) The diagram shows the graphs of $y = e^x - 2$ and $y = e^{-x}$. (i) Find the area between the curves from x=1 and x=2. Leave your answer in terms of e. 3 (ii) Show that the curves intersect when $e^{2x} - 2e^x - 1 = 0$. 1 3 (iii) Show that the x-coordinate of the point of intersection of the curves is approximately 0.881. (b) The velocity of a object moving along the x-axis is given by $v = 2\sin t + 1$ for $0 \le t \le 2\pi$ where ν is measured in metres per second and t in seconds. (i) When is the object at rest? 2 2 1 1 2 - (ii) Sketch the graph of v as a function of t for $0 \le t \le 2\pi$ - iii) Find the maximum velocity of the object for this period. - (iv) When is the object travelling in the negative direction during this period? - (v) Calculate the total distance travelled by the object in the period $\pi \le t \le 2\pi$. Question 16 (15 marks) Marks (a) George is saving for a holiday. He opens a savings account with an interest rate of 0.4% per
month compounded monthly at the end of each month. George decides to deposit \$450 into the account on the first of each month. He makes his first deposit on the 1st December 2011 and his last on the 1st June 2014. George withdraws the entire amount, plus interest, immediately after his final interest payment on the 30th June 2014. (i) How much did George deposit into his saving account? Answer correct to the nearest dollar. 1 (ii) How much did George withdraw from his account on the 30th June 2014? Answer correct to the nearest dollar. 3 (iii) George's holiday is postponed due to family illness. He decides to deposit \$12 000 into a different account with an interest rate of 5% p.a. compounded quarterly for 2 years. How much will George receive at the end of the investment period? Answer correct to the nearest dollar. 2 (b) ABCD is a rectangle with CD=3 cm and AD=2 cm. F and E lie on the lines BC and BA, so that F, D and E are collinear. Let CF=x cm and AE=y cm. (i) Show that $\triangle FCD$ and $\triangle DAE$ are similar. 3 (ii) Show that xy = 6. 1 iii) Show that the area (A) of $\triangle FBE$ is given by $A = 6 + \frac{3}{2}x + \frac{6}{x}$. 2 Find the height and base of ΔFBE with minimum area. Justify your answer. End of paper **ACE Examination 2014** ## HSC Mathematics Yearly Examination ## Worked solutions and marking guidelines | Section I | | | | |-----------|--|-----------|--| | | Solution | Criteria | | | 1 | $\int_{-\infty}^{\infty} -\cos x dx = 2\ln x - \sin x + C$ | 1 Mark: D | | | | 4-3x <13 | | | | | 4-3x < 13 and $-4+3x < 13$ | | | | 2 | -3x < 9 3x < 17 | 1 Mark: C | | | | $x > -3 \qquad x < \frac{17}{3}$ | | | | | $2x + y = 7 \qquad (1)$ | | | | | $x - 2y = 1 \qquad (2)$ | | | | | Multiply eqn (1) by 2 | | | | | 4x + 2y = 14 (3) | 1 Mark: A | | | 3 | Eqn (2)+(3)
5x = 15 or $x = 3$ | 1 Mark: A | | | | Substitute $x = 3$ into eqn (1) | | | | | 6+y=7 or y=1 | | | | | Solution is $x = 3$ and $y = 1$. | | | | 4 | $2x^2 - 7x - 15 = (2x + 3)(x - 5)$ | 1 Mark: B | | | | $\frac{5.79 + 0.55}{\sqrt{4.32 - 3.28}} = 6.216881484$ | | | | 5 | | 1 Mark: B | | | | ≈6 | | | | | $(3\sqrt{12} + \sqrt{75})(2 + \sqrt{48}) = (6\sqrt{3} + 5\sqrt{3})(2 + 4\sqrt{3})$ | | | | 6 | $=12\sqrt{3}+72+10\sqrt{3}+60$ | 1 Mark: C | | | | $=132+22\sqrt{3}$ | | | | | Therefore $p = 132$ and $q = 22$ | | | | 7 | The point (3,2) satisfies the equation $6x - ky = 8$. | | | | | $6 \times 3 - k \times 2 = 8$ | 1 Mark: C | | | | 18 - 2k = 8 $-2k = -10$ | 1 Mark: C | | | | -2k = -10 $k = 5$ | | | | L | N - 0 | | | | 8 | Now $y = \sqrt{4 - x^2}$ or $y^2 = 4 - x^2$
$V = \pi \int_{-2}^{2} y^2 dx$
$= 2\pi \int_{0}^{2} (4 - x^2) dx$ | 1 Mark: B | |---------------|--|--| | 9 | $4x^{2} - 4x + 4y^{2} + 24y + 21 = 0$ $x^{2} - x + y^{2} + 6y = -\frac{21}{4}$ $(x - \frac{1}{2})^{2} - \frac{1}{4} + (y + 3)^{2} - 9 = -\frac{21}{4}$ $(x - \frac{1}{2})^{2} + (y + 3)^{2} = 4$ Centre $(\frac{1}{2}, -3)$ and radius of 2. | 1 Mark: A | | 10 | $a = 12 \text{ and } S = 15$ $S = \frac{a}{1 - r}$ $15 = \frac{12}{1 - r}$ $15 - 15r = 12$ $15r = 3$ $r = \frac{1}{5}$ | 1 Mark: A | | Section | TT | | | 11(a)
(i) | Equation of $CD \frac{x}{a} + \frac{y}{b} = 1$ $\frac{x}{3} + \frac{y}{4} = 1$ $4x + 3y = 12$ $4x + 3y - 12 = 0$ | 1 Mark: Correct
answer. | | 11(a)
(ii) | $4x+3y-12=0, y=-\frac{4}{3}x+4 \qquad \text{Gradient is } -\frac{4}{3}$ $3x-4y=0, y=\frac{3}{4}x \text{Gradient is } \frac{3}{4}$ Perpendicular lines then $m_1m_2=-1$ $-\frac{4}{3}\times\frac{3}{4}=-1 \text{True}$ | 2 Marks:
Correct answer.
1 Mark: Finds
the gradient of OE or
recognises
$m_1m_2 = -1$. | | 11(a)
(iii) | In $\triangle DOE$ and $\triangle OCE$ | 2 Marks: | |----------------|--|--------------------------| | (111) | $Let x = \angle ECO$ | Correct answer. | | | $\angle ECO + \angle CDO + \angle DOC = 180^{\circ}$ (angle sum of triangle is 180) | 1 Mark: Shows | | | $\angle CDO = 180^{\circ} - 90^{\circ} - x = 90^{\circ} - x$ | some | | | $\angle DOE + \angle EDO + \angle DEO = 180^{\circ}$ (angle sum of triangle is 180°) | understanding | | | $\angle DOE = 180^{\circ} - (90^{\circ} - x) - 90^{\circ}$ | | | | $\angle DOE = x$ | | | | $\angle DEO = \angle CEO = 90^{\circ}$ (OE is perpendicular to CD) | | | | $\angle DOE = \angle ECO$ (Both equal to x) | | | | $\angle EOC = \angle EDO$ (Both equal to 90-x) | | | | ΔDOE is similar to ΔOCE (equiangular) | | | 11(a)
(iv) | $\frac{OE}{DE} = \frac{CE}{OE} = \frac{OC}{OD} = \frac{3}{4}$ (corresponding sides in similar triangles) | 1 Mark; Correct answer. | | 11(a) | $\Delta DOE = \frac{1}{2}DE \times OE$ | 1 Mark: Correct | | (v) | $\frac{\Delta DOE}{\Delta OCE} = \frac{\frac{1}{2}DE \times OE}{\frac{1}{2}CE \times OE}$ | answer. | | Ì | 1 | | | | $=\frac{DE}{OE} \times \frac{OE}{CE}$ | | | | $=\frac{4}{3}\times\frac{4}{3}=\frac{16}{9}$ | | | | $-\frac{3}{3},\frac{3}{3},\frac{9}{9}$ | | | 11(b) | $y = \log_e x - 1$ At the point $(e, 0)$ $\frac{dy}{dx} = \frac{1}{e}$ | 2 Marks: | | | | Correct answer. | | | $\frac{dy}{dx} = \frac{1}{x}$ | 1 Mark: Finds | | | Point slope formula $y - y_1 = m(x - x_1)$ | the gradient of | | | | the tangent | | | $y - 0 = \frac{1}{e}(x - e)$ | | | | $y = \frac{1}{e}x - 1 \text{ or } x - ey - e = 0$ | | | 11(c) | $y = x^2 - 2x + 5$ | 2 Marks: | | (i) | $y = (x-1)^2 + 4$ | Correct answer. | | | $y-4=(x-1)^2$ | 1 Mark:
Completes the | | | Vertex is (1, 4) | square | | 11(c) | | 1 Mark: Correct | | (ii) | | answer. | | | $y-4=4\times\frac{1}{4}(x-1)^2$ | | | | | | | 11(c)
(iii) | $\frac{dy}{dx} = 2x - 2$ At the point (2,5) $\frac{dy}{dx} = 2 \times 2 - 2 = 2$ | 2 Marks:
Correct answer. | |----------------|--|--| | | $m_1 m_2 = -1$ Equation of the normal $y - y_1 = m(x - x_1)$
$m_1 \times 2 = -1$ $y - 5 = -\frac{1}{2}(x - 2)$ $m = -\frac{1}{2}$ $x + 2y - 12 = 0$ | 1 Mark: Finds
gradient of the
tangent | | 11(c)
(iv) | $\frac{d^2y}{dx^2} = 2 > 0$ Parabola is concave up for all real x | 1 Mark: Correct answer. | | 12(a)
(i) | $\frac{\frac{2}{199}}{\frac{1}{200}} \text{ Win } \text{ WW}$ $\frac{\frac{3}{200}}{\frac{197}{199}} \text{ Loss } \text{ WL}$ $\frac{\frac{1}{197}}{200} \text{ Loss } \frac{\frac{1}{199}}{199} \text{ Loss } \text{ LL}$ $P(W) = \frac{3}{200}$ | 1 Mark: Correct
answer. | | 12(a)
(ii) | $P(WW) = \frac{3}{200} \times \frac{2}{199}$ $= \frac{3}{19900}$ | 1 Mark: Correct
answer. | | 12(a)
(iii) | $P(LW) = \frac{197}{200} \times \frac{3}{199}$ $= \frac{591}{39800}$ | 1 Mark: Correct
answer. | | 12(a)
(iv) | $P(LL) = \frac{197}{200} \times \frac{196}{199}$ $= \frac{9653}{9950}$ | 1 Mark: Correct
answer. | | 12(b)
(i) | $\frac{d}{dx}\left(e^{3x}\tan x\right) = e^{3x}(\sec^2 x) + \tan x 3e^{3x}$ $= e^{3x}(\sec^2 x + 3\tan x)$ | 2 Marks:
Correct answer.
1 Mark:
Applies the
product rule | | 12(b)
(ii) | $\frac{d}{dx} \left(\frac{\sin x}{5 - x} \right) = \frac{(5 - x)\cos x - \sin x \times -1}{(5 - x)^2}$ $= \frac{(5 - x)\cos x + \sin x}{(5 - x)^2}$ | 2 Marks:
Correct answer.
1 Mark:
Applies the
quotient rule | | 12(c) | $\int \frac{dx}{e^{4x}} = \int e^{-4x} dx$ | 2 Marks: | |----------------|---|--------------------------------| | (i) | | Correct answer. 1 Mark: Shows | | | $=-\frac{1}{4}e^{-4x}+C$ | some | | 12(c) | - | understanding. 2 Marks: | | (ii) | $\int_0^\pi \sec^2 \frac{x}{3} dx = 3 \left[\tan \frac{x}{3} \right]_0^\pi$ | Correct answer. | | | $= 3 \left[\tan \frac{\pi}{3} - \tan \frac{0}{3} \right]$ $= 3\sqrt{3}$ | 1 Mark: Finds
the integral. | | 12(d)
(i) | $\alpha + \beta = -\frac{b}{a}$ | 1 Mark: Correct answer. | | | $=-\frac{-1}{2}=\frac{1}{2}$ | | | 12(d)
(ii) | $\alpha\beta = \frac{c}{a}$ | 1 Mark: Correct answer. | | | $=\frac{a}{2}$ | answer. | | 12(d)
(iii) | $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2}$ | 1 Mark: Correct answer. | | | $=\frac{\left(\frac{1}{2}\right)^2 - 2 \times \left(\frac{-15}{2}\right)}{\left(\frac{-15}{2}\right)^2} = \frac{61}{225}$ | | | 13(a)
(i) | $S_n = \frac{3n^2 + n}{2} \qquad \qquad S_n = \frac{3n^2 + n}{2}$ | 1 Mark: Correct answer. | | | $S_1 = \frac{3 \times 1^2 + 1}{2} = 2$ $S_2 = \frac{3 \times 2^2 + 2}{2} = 7$ | | | 13(a)
(ii) | $a = T_1 = S_1 = 2$ | 2 Marks:
Correct answer. | | () | $T_2 = S_2 - S_1 = 7 - 2 = 5$ | 1 Mark: Finds | | | $d = T_2 - T_1 = 5 - 2 = 3$ | the first term or the common | | | Sequence is {2, 5, 8,} | difference. | | 13(a)
(iii) | $T_n = a + (n-1)d$ | 1 Mark: Correct | | (111) | =2+(n-1)3 | answer. | | | =2+3n-3 | | | L | =3n-1 | | | 13(b)
(i) | $f(x) = x^3 - 3x^2 - 9x + 22$ Stationary points $f'(x) = 0$
$f'(x) = 3x^2 - 6x - 9$ $3(x^2 - 2x - 3) = 0$
$= 3(x^2 - 2x - 3)$ $3(x - 3)(x + 1) = 0$
f''(x) = 6x - 6 $x = -1, x = 3When x = -1, y = 27 then f''(x) = -12 < 0 Maxima.When x = 3, y = -5 then f''(x) = 12 > 0 Minima.Maximum turning point at (-1, 27).Minimum turning point at (3, -5).$ | 3
Marks: Correct answer. 2 Marks: Finds the stationary points. 1 Mark: Correct differentiation to determine the stationary points. 2 Marks: | |----------------|---|---| | (ii) | When $x = 1$, $y = 11$
Check for change in concavity When $x = 0.9$ then $f''(x) = 6 \times 0.9 - 6 < 0$ When $x = 1.1$ then $f''(x) = 6 \times 1.1 - 6 > 0$ Hence (1,11) is a point of inflexion. | Correct answer. 1 Mark: Finds the point of inflexion. | | 13(b)
(iii) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2 Marks:
Correct answer.
1 Mark: Correct
shape or shows
some
understanding. | | 13(b)
(iv) | Function is concave down when $x < 1$ (from the graph) | 1 Mark: Correct answer. | | 13(c)
(i) | B A $\angle AOB = 85^{\circ} + 20^{\circ}$ $= 105^{\circ}$ | 1 Mark: Correct
answer. | | 13(c)
(ii) | After 2 hours Alex travels 40 km and Bella travels 50 km. | 2 Marks:
Correct answer. | |---------------|---|--| | | $AB^2 = 40^2 + 50^2 - 2 \times 40 \times 50 \times \cos 105^\circ$
$AB^2 = 5135.27618$
AB = 71.66084133
$AB \approx 72 \text{ km}$ | 1 Mark: Uses
the cosine rule
with some
correct values | | | Alex and Bella are 72 km apart after 2 hours. | | | 14(a)
(i) | $\angle BCA = \angle DCA$ (diagonals of a rhombus bisect the angles through which they pass) | 1 Mark: Correct answer. | |----------------|--|--| | 14(a)
(ii) | In $\triangle BFC$ and $\triangle DFC$ | 3 Marks:
Correct answer. | | | CF = CF (common side)
$\angle BCF = \angle DCF$ (proven from part (i))
BC = DC (adjacent sides of a rhombus are equal)
$\therefore \Delta BFC \equiv \Delta DFC$ (SAS) | 2 Marks:Makes
significant
progress.
1 Mark: One
relevant
statement and
reason. | | 14(a)
(iii) | $\angle AEB = \angle EBC$ (alternate angles are equal, $AD//BC$)
Now $\angle AEB = 90^{\circ}$ $\therefore \angle FBC = 90^{\circ}$ | 1 Mark: Correct answer. | | 14(a)
(iv) | $\angle FBC = \angle FDC$ (matching sides in congruent triangles)
$\therefore \angle FBC = 90^{\circ}$ | 1 Mark: Correct answer. | | 14(b)
(i) | $N(t) = Ae^{0.15t}$ $\frac{dN}{dt} = A \times 0.15e^{0.15t}$ $= 0.15N$ The number of bacteria increases at a rate proportional to the number present. | 2 Marks: Correct answer. 1 Mark: Finds $\frac{dN}{dt}$. | | 14(b)
(ii) | We need to find A when $t = 3$ and $N = 1.5 \times 10^8$ $N(t) = Ae^{0.15t}$ $1.5 \times 10^8 = Ae^{0.15 \times 3}$ $A = \frac{1.5 \times 10^8}{e^{0.45}}$ $= 95 644 222.74$ $\approx 9.6 \times 10^7$ | 1 Mark: Correct
answer. | | 14(b)
(iii) | When $t = 3 + x$ the number has doubled or $N = 2 \times (1.5 \times 10^8)$.
$N(t) = Ae^{0.15t}$ $3.0 \times 10^8 = 95 644 222.74 \times e^{0.15(3+x)}$ $e^{0.15(3+x)} = \frac{3.0 \times 10^8}{95 644 222.74}$ $0.15(3+x) = \log_e \left(\frac{3.0 \times 10^8}{95 644 222.74}\right)$ $3+x = \log_e \left(\frac{3.0 \times 10^8}{95 644 222.74}\right) \div 0.15$ $x = \log_e \left(\frac{3.0 \times 10^8}{95 644 222.74}\right) \div 0.15 - 3$ | 2 Marks:
Correct answer.
1 Mark: Makes
some progress
towards the
solution. | |----------------|---|---| | | = 4.620981204
≈ 4.6 days | | | 14(c) | $\int_{0}^{\frac{2}{15}} v dt = \frac{h}{3} \left[y_0 + y_4 + 4(y_1 + y_3) + 2y_2 \right]$ | 2 Marks:
Correct answer. | | | $= \frac{\frac{1}{30}}{3} [0 + 60 + 4 \times (35 + 50) + 2 \times 45]$ $= 5.444444444$ ≈ 5.44 | 1 Mark: Uses
Simpson's rule
with one
correct value. | | 14(d) | $2\cos x + 1 = 0$ $\cos x = -\frac{1}{2} \text{ or } x = \frac{\pi}{3}$ $\cos x + 2 = 0$ $\cos x = -2$ No solution | 2 Marks:
Correct answer. | | | In domain $0 \le x \le 2\pi$ the solution is $x = \frac{2\pi}{3}, \frac{4\pi}{3}$ | one solution or
shows some
understanding. | | 15(a)
(i) | $A = \int_{0}^{2} (e^{x} - 2) dx - \int_{0}^{2} e^{-x} dx$ | 3 Marks:
Correct answer. | |---------------|--|---------------------------------| | (1) | $= \left[e^x - 2x + e^{-x} \right]_{1}^{2}$ | 2 Marks:Makes | | | $= (e^{2} - 4 + e^{-2}) - (e - 2 + e^{-1})$ | significant | | | $= (e^{-4+e^{-2}} - (e^{-2+e^{-2}})$ $= e^{2} + e^{-2} - e^{-1} - 2 \text{ square units}$ | progress. 1 Mark: | | | $= e^{z} + e^{z} - e - e^{z} - 2$ square units | Correctly sets up one integral | | 15(a) | Solve the equations simultaneously | 1 Mark: Correct | | (ii) | $e^x - 2 = e^{-x}$ | answer. | | | $e^x - 2 = \frac{1}{e^x}$ | | | | $e^{2x} - 2e^x - 1 = 0$ | | | 15(a)
(ii) | The x coordinate is the solution of the equation $e^{2x} - 2e^x - 1 = 0$ | 3 Marks:
Correct answer. | | (11) | Let $m = e^x$ then $m^2 - 2m - 1 = 0$ | Correct answer. | | | $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ | 2 Marks: | | | | Solves the guadratic | | | $=\frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times-1}}{2\times1}$ | equation. | | | $=\frac{2\pm\sqrt{8}}{2}$ | 1 Mark: | | | $\begin{vmatrix} 2 \\ = 1 + \sqrt{2} \end{vmatrix}$ | Recognises the | | | $\begin{array}{ccc} = 1 \pm \sqrt{2} \\ \therefore e^{x} = 1 + \sqrt{2} & \text{or} & \therefore e^{x} = 1 - \sqrt{2} \end{array}$ | quadratic equation. | | | $x = \log_{\bullet}(1 + \sqrt{2})$ $x = \log_{\bullet}(1 - \sqrt{2})$ $x = \log_{\bullet}(1 - \sqrt{2})$ | | | | $x = \log_e(1+\sqrt{2})$ $x = \log_e(1-\sqrt{2})$
= 0.881373587 No solution | | | | ≈ 0.881 | | | 15(b) | Particle at rest when $v = 0$ | 2 Marks: | | (i) | $v = 2\sin t + 1$ | Correct answer. | | | $0 = 2\sin t + 1$ | 1 Mark: Finds | | | $\sin t = -\frac{1}{2}$ | $2\sin t + 1 = 0$ or calculates | | | $t = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ | one answer. | | 15(b)
(ii) | 3 † | 2 Marks:
Correct answer. | |----------------|--|--| | | $v = 2\sin t + 1$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π | 1 Mark: Correct
shape of the
curve. | | 15(b)
(iii) | Maximum velocity is 3 metres per second (from the graph) | 1 Mark: Correct answer. | | 15(b)
(iv) | Negative direction occurs when $v < 0$ $\frac{7\pi}{6} \le t \le \frac{11\pi}{6}$ (from the graph and 15(b)(i)) | 1 Mark: Correct
answer. | | 15(b)
(v) | Distance travelled is the area under the curve between $\pi \le t \le 2\pi$. | 2 Marks:
Correct answer. | | | $d = 2 \int_{\pi}^{\frac{7\pi}{6}} (2\sin t + 1)dt + \left \frac{\int_{\frac{\pi}{6}}^{1\pi}}{\int_{6}^{6}} (2\sin t + 1)dt \right $ $= 2 \left[-2\cos t + t \right]_{\pi}^{\frac{7\pi}{6}} + \left \left[-2\cos t + t \right]_{\frac{7\pi}{6}}^{\frac{16\pi}{6}} \right $ | 1 Mark: Makes
some progress
towards the
solution. | | | $=2\left(\frac{\pi}{6}+\sqrt{3}-2\right)+\left \left(\frac{4\pi}{6}-2\sqrt{3}\right)\right $ | | | | $=4\sqrt{3}-4-\frac{\pi}{3}$ | | | 16(a) (iii) $s = 450(1 + C)^n$ 10004$ | 16(a) | 31 deposits between 1st December 2011 and 1st June 2014. | 1 Mark: Correct |
---|-------|--|-------------------------| | $ \begin{array}{c} 16(a) \\ (ii) \end{array} \qquad \begin{array}{c} 1^{st} \operatorname{deposit} - A = P(1+r)^n \\ = 450(1+0.004)^{31} \\ S = 450(1.004) + 450(1.004)^2 + 450(1.004)^3 + + 450(1.004)^{31} \\ S = \frac{450(1.004) \left[1.004^{31} - 1 \right]}{1.004 - 1} \\ = \frac{450(1.004) \left[1.004^{31} - 1 \right]}{1.004 - 1} \\ = \frac{14879.57127}{8 \times 14880} \\ \operatorname{George withdraws} \$14880 \text{ from his account.} \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Uses compound interest formuly with one correct value.} \\ A = P(1+r)^n \\ = 12000(1+0.0125)^8 \\ = \$13253.83321 \\ \approx \$13254 \\ \operatorname{George will receive} \$13254 \text{ after 2 years.} \end{array} \qquad \begin{array}{c} 1 \text{ Mark: Uses compound interest formuly with one correct value.} \\ 2 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Correct answer.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Correct answer.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Correct answer.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Correct answer.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Correct answer.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Makes significant progress.} \\ 3 \text{ Marks: Correct answer.} \\ 2 \text{ Marks: Makes significant progress.} \\ 3 Marks: Makes significant pro$ | (i) | Total deposited = \$450×31 | answer. | | (ii) $S = 450(1+0.004)^{31}$ $S = 450(1.004) + 450(1.004)^{2} + 450(1.004)^{3} + + 450(1.004)^{31}$ $S = 450(1.004) \left[1.004^{31} - 1 \right]$ $s = \frac{450(1.004) \left[1.004^{31} - 1 \right]}{1.004 - 1}$ $= \$14879.57127$ $\approx \$14880$ George withdraws \\$14880 from his account. $106(a)$ (iii) $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1+r)^{n}$ $= 12000(1+0.0125)^{8}$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $106(b)$ (i) $BCMD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $2 Marks:$ $Correct answe$ $1 Mark: Uses$ $2 Marks:$ Ma$ | | =\$13950 | | | (ii) $= 450(1+0.004)^{31}$ $S = 450(1.004) + 450(1.004)^{2} + 450(1.004)^{3} + + 450(1.004)^{31}$ $G.P. \text{ with } a = 450(1.004), \ r = 1.004 \text{ and } n = 31$ $s = \frac{450(1.004) \left[1.004^{31} - 1 \right]}{1.004 - 1}$ $= \$14879.57127$ $\approx \$14880$ George withdraws \\$14880 from his account. $16(a)$ (iii) $P = \$12000, \ r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1+r)^{n}$ $= 12000(1+0.0125)^{8}$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $16(b)$ (i) $2BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $2BCD + \angle DAE = 90^{\circ} \text{ (in } \Delta DAE$ $\angle FCD = 2DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC/AD \text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{2}$ $1 \text{ Mark: Correanswer.}$ | | $1^{\text{st}} \text{ deposit - } A = P(1+r)^n$ | 3 Marks: | | G.P. with $a = 450(1.004)$, $r = 1.004$ and $n = 31$ $s = \frac{450(1.004)[1.004^{31} - 1]}{1.004 - 1}$ $= \$14879.57127$ $\approx \$14880$ George withdraws \$14880 from his account. $16(a)$ (iii) $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1 + r)^n$ $= 12000(1 + 0.0125)^8$ $= \$13253.83321$ $\approx \$13254$ George will receive \$13254 after 2 years. $16(b)$ (i) $BCMAD$ (opposite sides of a rectangle are parallel) $\angle BCD = \angle DAB = 90^\circ \text{ (angles of a rectangle equal } 90^\circ \text{)}$ $\angle BCD + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ $90^\circ + \angle FCD = 90^\circ \text{ Similarly } \angle DAE = 90^\circ \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BCMAD \text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ | (ii) | | Correct answer. | | with 31 terms. $s = \frac{450(1.004)[1.004^{31} - 1]}{1.004 - 1}$ $= \$14879.57127$ $\approx \$14880$ George withdraws \$14880 from his account. $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1 + r)^n$ $= 12000(1 + 0.0125)^8$ $= \$13253.83321$ $\approx \$13254$ George will receive \$13254 after 2 years. $16(b)$ (i) $BCMD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^\circ \text{ (angles of a rectangle equal } 90^\circ \text{)}$ $\angle BCD + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ $90^\circ + \angle FCD = 90^\circ \text{ Similarly } \angle DAE = 90^\circ \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BCMD \text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ with 31 terms. with 31 terms. with 31 terms. I Mark: Uses compound interest formuly with one correct value. | | $S = 450(1.004) + 450(1.004)^2 + 450(1.004)^3 + \dots + 450(1.004)^{31}$ | 2 Marks: | | $s = \frac{450(1.004)[1.004^{31} - 1]}{1.004 - 1}$ $= \$14879.57127$ $\approx \$14880$ George withdraws \\$14880 from his account. $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1 + r)^n$ $= 12000(1 + 0.0125)^{\$}$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $1 \text{ Mark: Uses compound interest formulation with one correct value.}$ $2 \text{ Marks: Correct answe}$ $1 \text{ Mark: Uses compound interest formulation with one correct value.}$ $1 \text{ Mark: Uses compound interest formulation of the correct value.}$ $1 \text{ Mark: Uses compound interest formulation of the correct value.}$ $1 \text{ Mark: Uses compound interest formulation of the correct value.}$ $2 \text{ Marks: Correct answe}$ $2 \text{ Marks: Correct answe}$ $2 \text{ Marks: Correct answe}$ 2 Marks: Makes One relevant statement and reason.}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correation of the matching sides in similar triangles}$ $\frac{x}{2} = \frac{3}{2}$ $\frac{3}{2}$ | | G.P. with $a = 450(1.004)$, $r = 1.004$ and $n = 31$ | Identifies G.P. | | $=\$14879.57127\\ \approx\$14880\\ \text{George withdraws }\$14880\text{ from his account.}$ $\text{George withdraws }\$14880\text{ from his account.}$ $P=\$12000, r=\frac{0.05}{4}=0.0125\text{ and }n=2\times 4=8$ $A=P(1+r)^n\\ =12000(1+0.0125)^8\\ =\$13253.83321\\ \approx\$13254\\ \text{George will receive }\$13254\text{ after 2 years.}$ $1 \text{ Mark: Uses
compound interest formul with one correct value.}$ $8C/\!\!/AD\text{ (opposite sides of a rectangle are parallel)}\\ \angle BCD=\angle DAB=90^*\text{ (angles of a rectangle equal }90^*\text{)}$ $\angle BCD+\angle FCD=180^*\text{ (straight angle is }180^*\text{)}$ $90^*+\angle FCD=180^*\text{ (straight angle is }180^*\text{)}$ $90^*+\angle FCD=90^*\text{ Similarly }\angle DAE=90^*\text{ (from above)}$ $\angle BFD=\angle DAE=90^*\text{ (from above)}$ $\angle BFD=\angle DAE=90^*\text{ (from above)}$ $\angle BFD=\angle ADE\text{ (corresponding angles are equal, }BC/\!\!/AD\text{)}$ $\therefore \Delta FCD\text{ is similar to }\Delta DAE\text{ (equiangular)}$ $1 \text{ Mark: Correanswer.}$ | | $450(1.004) [1.004^{31} - 1]$ | with 31 terms. | | $=\$14879.57127$ $\approx\$14880$ George withdraws \\$14880 from his account. $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1+r)^n$ $= 12000(1+0.0125)^8$ $=\$13253.83321$ $\approx\$13254$ George will receive \\$13254 after 2 years. $BC/AD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^* \text{ (angles of a rectangle equal } 90^*\text{)}$ $\angle BCD + \angle FCD = 180^* \text{ (straight angle is } 180^*\text{)}$ $90^* + \angle FCD = 90^*$ Similarly $\angle DAE = 90^*$ (from above) $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC/AD\text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Corresponding sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ | | $s = \frac{1.004 - 1}{1.004 - 1}$ | 1 Mark: Uses | | George withdraws \$14880 from his account. 16(a) (iii) $P = \$12000$, $r = \frac{0.05}{4} = 0.0125$ and $n = 2 \times 4 = 8$ $A = P(1+r)^n$ $= 12000(1+0.0125)^8$ $= \$13253.83321$ $\approx \$13254$ George will receive \$13254 after 2 years. 16(b) $\angle BCD = \angle DAB = 90^\circ$ (angles of a rectangle are parallel) $\angle BCD + \angle FCD = 180^\circ$ (straight angle is 180°) $90^\circ + \angle FCD = 90^\circ$ Similarly $\angle DAE = 90^\circ$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, BC / AD) $\therefore \Delta FCD$ is similar to ΔDAE (equiangular) 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{2}$ $\frac{3}{2}$ | | =\$14879.57127 | compound | | George withdraws \$14880 from his account. 16(a) (iii) $P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$ $A = P(1+r)^n$ $= 12000(1+0.0125)^8$ $= \$13253.83321$ $\approx \$13254$ George will receive $\$13254$ after 2 years. 16(b) (i) BC/AD (opposite sides of a rectangle are parallel) $\angle BCD = \angle DAB = 90^\circ \text{ (angles of a rectangle equal } 90^\circ \text{)}$ $\angle BCD + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ $90^\circ + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ $90^\circ + \angle FCD = 90^\circ \text{ Similarly } \angle DAE = 90^\circ \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC/AD \text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $1 \text{ Mark: Correct answer}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answer}$ $2 \text{ Marks: } \text{ Makes}$ $3 \text{ Marks: } \text{ Correct answer}$ $2 \text{ Marks: } \text{ Makes}$ $3 \text{ Significant progress.}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answer}$ $1 \text{ Mark: Correct answer}$ $2 \text{ Marks: } \text{ Makes}$ $2 \text{ Marks: } \text{ Makes}$ $3 \text{ Marks: } \text{ Correct answer}$ $2 \text{ Marks: } \text{ Makes}$ $3 \text{ Marks: } \text{ Marks: } \text{ Makes}$ $3 \text{ Marks: } \text{ Marks: } \text{ Makes}$ $3 \text{ Marks: } \text{ Marks: } \text{ Marks: } \text{ Marks: } \text{ Mark: } \text{ Mark: } \text{ One relevant statement and } \text{ reason.}$ $1 \text{ Mark: Correct answer}$ $1 \text{ Mark: Correct answer}$ $2 \text{ Marks: } \text{ Marks: } \text{ Marks: } \text{ Marks: } \text{ Mark: } \text{ One relevant statement and } \text{ reason.}$ $1 \text{ Mark: Correct answer}$ $\frac{x}{2} = \frac{3}{2}$ | | ≈\$14880 | interest formula | | (iii) $P = \$12000, r = \frac{1000}{4} = 0.0125$ and $n = 2 \times 4 = 8$ Correct answer $A = P(1+r)^n = 12000(1+0.0125)^8 = \$13253.83321 = \$13254$ George will receive $\$13254$ after 2 years. 16(b) (i) $BC \% AD$ (opposite sides of a rectangle are parallel) $\angle BCD = \angle DAB = 90^\circ$ (angles of a rectangle equal 90°) $\angle BCD + \angle FCD = 180^\circ$ (straight angle is 180°) $2 Marks$: Makes $2 FCD = 90^\circ$ Similarly $2 DAE = 90^\circ$ (from above) $2 BFD = 2 ADE$ (corresponding angles are equal, $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (corresponding angles are equal, $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (and $2 BC \% AD$) $2 BC \% AD$ (b) $2 BC \% AD$ (c) $2 BC \% AD$ (b) $2 BC \% AD$ (c) | | George withdraws \$14880 from his account. | | | $A = P(1+r)^n$ $= 12000(1+0.0125)^8$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $16(b)$ (i) $BC\%AD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^\circ \text{ (angles of a rectangle equal } 90^\circ \text{)}$ $\angle BCD + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ $90^\circ + \angle FCD = 180^\circ \text{ (straight angle is } 180^\circ \text{)}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 $4 \text{ Mark: Marks: Makes}$ $4 \text{ Marks: Marks: Makes}$ $4 \text{ Marks: Marks: Makes}$ $4 \text{ Marks: Marks: Marks: Marks: Makes}$ $4 Marks: Marks: Marks: Marks: Marks: Marks: Marks: Mak$ | | $P = \$12000, r = \frac{0.05}{12000} = 0.0125 \text{ and } n = 2 \times 4 = 8$ | | | $= 12000(1+0.0125)^{8}$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $16(b)$ (i) $BC \% AD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 90^{\circ}$ Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC \% AD \text{)}$ $\therefore \triangle FCD \text{ is similar to } \triangle DAE \text{ (equiangular)}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correct answe}$ | (111) | 7 | Correct answer. | | $= 12000(1+0.0125)^{8}$ $= \$13253.83321$ $\approx \$13254$ George will receive \\$13254 after 2 years. $16(b)$ (i) $BC \% AD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ 2 Marks: Makes 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ 2 Marks: Makes $3 Correct answer}$ $1 \text{ Mark: One relevant}$ 2 Marks: Makes $3 \text{ Marks: Correct answer}$ $4 Mar$ | | | 1 Mark: Uses | | $\approx \$13254$ George will receive $\$13254$ after 2 years. $16(b)$ (i) $BC \# AD$ (opposite sides of a rectangle are parallel) $\angle BCD = \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ 2 Marks: $Makes$ $\angle FCD = 90^{\circ}$ $Similarly \angle DAE = 90^{\circ}$ $In \Delta FCD \text{ and } \Delta DAE$ $\angle FCD = \angle DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC \# AD \text{)}$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ $1 Mark: Correlation of the proof o$ | | , , , | compound | | George will receive \$13254 after 2 years. 16(b) (i) $BC \# AD \text{ (opposite sides of a rectangle are parallel)}$ $\angle BCD
= \angle DAB = 90^{\circ} \text{ (angles of a rectangle equal } 90^{\circ} \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ 2 Marks: $90^{\circ} + \angle FCD = 180^{\circ}$ $\angle FCD = 90^{\circ}$ Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC \# AD \text{)}$ $\therefore \triangle FCD \text{ is similar to } \triangle DAE \text{ (equiangular)}$ 16(b) $\frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ | | | interest formula | | George will receive \$13254 after 2 years. 16(b) (i) $BC \# AD$ (opposite sides of a rectangle are parallel) $\angle BCD = \angle DAB = 90^\circ$ (angles of a rectangle equal 90°) $\angle BCD + \angle FCD = 180^\circ$ (straight angle is 180°) $90^\circ + \angle FCD = 180^\circ$ 2 Marks: Makes $\angle FCD = 90^\circ$ 5 Similarly $\angle DAE = 90^\circ$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^\circ$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, $BC \# AD$) statement and reason. 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{y}$ | | * | | | (i) $\angle BCD = \angle DAB = 90^\circ$ (angles of a rectangle equal 90°) Correct answer $\angle BCD + \angle FCD = 180^\circ$ (straight angle is 180°) 2 Marks: Makes $\angle FCD = 90^\circ$ Similarly $\angle DAE = 90^\circ$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^\circ$ (from above) 1 Mark: One relevant $\angle BFD = \angle ADE$ (corresponding angles are equal, BC/AD) 1 statement and reason. 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) 1 Mark: Correct answer $\frac{x}{2} = \frac{3}{2}$ | | George will receive \$13254 after 2 years. | | | $\angle BCD = \angle DAB = 90 \text{ (angles of a rectangle equal } 90 \text{)}$ $\angle BCD + \angle FCD = 180^{\circ} \text{ (straight angle is } 180^{\circ} \text{)}$ $90^{\circ} + \angle FCD = 180^{\circ} \text{ Makes}$ $\angle FCD = 90^{\circ}$ Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC/AD \text{)}$ statement and reason. $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ $1 \text{ Mark: Correanswer.}$ | | BC//AD (opposite sides of a rectangle are parallel) | | | $90^{\circ} + \angle FCD = 180^{\circ}$ $\angle FCD = 90^{\circ}$ Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $\angle FFD = \angle DAE = 90^{\circ}$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, $BC /\!\!/ AD$) statement and reason. $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{y}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Correlevant statement and reason.}$ | (i) | $\angle BCD = \angle DAB = 90^{\circ}$ (angles of a rectangle equal 90°) | Correct answer. | | $90^{\circ} + \angle FCD = 180^{\circ}$ $\angle FCD = 90^{\circ}$ Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^{\circ}$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, BC/AD) statement and reason. $16(b)$ (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{y}$ $1 \text{ Makes significant progress.}$ $1 \text{ Mark: One relevant statement and reason.}$ $1 \text{ Mark: Corresponding angles are equal, } BC/AD$) $1 \text{ mark: Corresponding angles are equal, } BC/AD$ $1 \text{ mark: Corresponding angles}$ $1 \text{ mark: Corresponding angles}$ | | $\angle BCD + \angle FCD = 180^{\circ}$ (straight angle is 180°) | 034 1 | | $ \angle FCD = 90^{\circ} $ significant progress. Similarly $\angle DAE = 90^{\circ}$ In $\triangle FCD$ and $\triangle DAE$ $ \angle FCD = \angle DAE = 90^{\circ} $ (from above) $ \angle BFD = \angle ADE $ (corresponding angles are equal, BC/AD) statement and reason. $ \triangle FCD $ is similar to $\triangle DAE$ (equiangular) $ (ii) $ $ \frac{CF}{AD} = \frac{CD}{AE} $ (matching sides in similar triangles) $ \frac{x}{2} = \frac{3}{y} $ $ 1 $ Mark: Correlative triangles) $ \frac{x}{2} = \frac{3}{y} $ | | $90^{\circ} + \angle FCD = 180^{\circ}$ | | | Similarly $\angle DAE = 90^\circ$ In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^\circ$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, $BC/\!\!/AD$) $\therefore \triangle FCD$ is similar to $\triangle DAE$ (equiangular) 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{y}$ 1 Mark: One relevant statement and reason. 1 Mark: Corresponding angles are equal, $BC/\!\!/AD$) 1 mark: Corresponding angles are equal, $BC/\!\!/AD$) | | ∠ <i>FCD</i> = 90° | | | In $\triangle FCD$ and $\triangle DAE$ $\angle FCD = \angle DAE = 90^\circ$ (from above) $\angle BFD = \angle ADE$ (corresponding angles are equal, $BC\%AD$) $\therefore \triangle FCD$ is similar to $\triangle DAE$ (equiangular) 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) $\frac{x}{2} = \frac{3}{y}$ 1 Mark: One relevant statement and reason. 1 Mark: Correlation of the property th | | Similarly $\angle DAE = 90^{\circ}$ | progress. | | $\angle FCD = \angle DAE = 90^{\circ} \text{ (from above)}$ $\angle BFD = \angle ADE \text{ (corresponding angles are equal, } BC \% AD)$ $\therefore \Delta FCD \text{ is similar to } \Delta DAE \text{ (equiangular)}$ relevant statement and reason. $\frac{16(b)}{(ii)} \frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)}$ $\frac{x}{2} = \frac{3}{y}$ $\frac{3}{y}$ | | | 1111111 | | $ ∠BFD = ∠ADE \text{ (corresponding angles are equal, } BC /\!\!/ AD) $ statement and reason. $ ∴ ΔFCD \text{ is similar to } ΔDAE \text{ (equiangular)} $ statement and reason. $ \frac{16(b)}{(ii)} \frac{CF}{AD} = \frac{CD}{AE} \text{ (matching sides in similar triangles)} $ $ \frac{x}{2} = \frac{3}{y} $ 1 Mark: Corresponding angles are equal, $BC /\!\!/ AD$ statement and reason. | | $\angle FCD = \angle DAE = 90^{\circ}$ (from above) | | | 16(b) (ii) $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) 1 Mark: Correanswer. $\frac{x}{2} = \frac{3}{y}$ | | | | | (ii) $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial E}$ (matching sides in similar triangles) answer. | | $\therefore \Delta FCD$ is similar to ΔDAE (equiangular) | reason. | | | | $\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles) | 1 Mark: Correct answer. | | | | x_3 | | | xy = 6 | | $\frac{\overline{2}}{\overline{y}}$ | | | | | xy = 6 | | | 16(b)
(iii) | $A = \frac{1}{2}bh$ | 2 Marks:
Correct answer. | |----------------|---|--| | | $= \frac{1}{2}(2+x)(3+y)$ $= \frac{1}{2}(6+2y+3x+xy)$ Now $xy = 6$ and $y = \frac{6}{x}$ $A = \frac{1}{2}(6+2\times\frac{6}{x}+3x+6)$ $= 6+\frac{3}{2}x+\frac{6}{x}$ | 1 Mark: Finds the correct expression for area containing both <i>x</i> and <i>y</i> . | | 16(b)
(iv) | $A = 6 + \frac{3}{2}x + 6x^{-1}$ | 3 Marks:
Correct answer. | | | $\frac{dA}{dx} = \frac{3}{2} - 6x^{-2}$ $= \frac{3}{2} - \frac{6}{x^{2}}$ Minimum area occurs when $\frac{dA}{dx} = 0$ $\frac{3}{2} - \frac{6}{x^{2}} = 0$ $\frac{6}{x^{2}} = \frac{3}{2}$ $3x^{2} = 12$ $x^{2} = 4$ $x = \pm 2$ Since x is a length the $x > 0$ $\therefore x = 2$ and $y = 3$ Test if a minimum $\frac{d^{2}A}{dx^{2}} = 12x^{-3} = \frac{12}{x^{3}} > 0 \text{ for all } x (x > 0)$ Therefore minimum value when $x = 2$ $\therefore BE = 6 \text{ cm} \text{ and } BF = 4 \text{ cm}$ | 2 Marks: Finds $x = 2$ and tests for minimum value. 1 Mark: Calculates the first derivative or has some understanding of the problem. |