11 M	ACF	Examin	ations
9	$\neg \cup_{L}$	LXaIIIIII	ativiis

tudent Name:	

2013 YEAR 12 YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- · Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the exact value of the definite integral $\int_{\frac{3}{\sqrt{h}}}^{3\sqrt{h}} \frac{dx}{x^2 + 9}$?
 - (A) $\frac{\pi}{18}$

(B) $\frac{\pi}{6}$

(C) $\frac{\pi}{3}$

- (D) $\frac{\pi}{2}$
- What are the coordinates of the point that divides the interval joining the points A(-6,4) and B(-2,-10) externally in the ratio 1:3?
 - (A) (-8,8)
 - (B) (-8,11)
 - (C) (2,8)
 - (D) (2,11)
- 3 What is the value of f'(x) if $f(x) = 3x^2 \cos^{-1} 3x$?
 - $(A) \quad \frac{-6x}{\sqrt{1-3x^2}}$
 - (B) $\frac{-6x}{\sqrt{1-9x^2}}$
 - (C) $\frac{-9x^2}{\sqrt{1-3x^2}} + 9x\cos^{-1}3x$
 - (D) $\frac{-9x^2}{\sqrt{1-9x^2}} + 6x\cos^{-1}3x$
- 4 What is the acute angle to the nearest degree that the line 3x-2y+1=0 makes with the y-axis?
 - (A) 27°
 - (B) 34°
 - (C) 56°
 - (D) 63°

- 5 A container contains seven identical discs except for their colour. Four are red, two are blue and one is white. Two balls are selected at random. What is the probability of getting two red balls on exactly three occasions from five selections of two balls?
 - (A) 0.0119

(B) 0.0298

(C) 0.1190

- (D) 0.2975
- 6 Let α , β and γ be the roots of $y^3 5y + 1 = 0$.

What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$?

- (A) -5
- (B) -1
- (C) 1
- (D) 5
- 7 What is the indefinite integral for $\int (2\sin^2 x x^2) dx$?
 - (A) $2x \sin 2x \frac{x^3}{3} + c$
 - (B) $x \frac{1}{2}\sin 2x \frac{x^3}{3} + c$
 - (C) $2x \sin 2x 2x + c$
 - (D) $x \frac{1}{2}\sin 2x 2x + c$
- 8 One approximate solution of the equation $\cos x \frac{x}{3} = 0$ is x = 1.1. What is another approximation to this solution using one application of Newton's method?
 - (A) x = 1.052
 - (B) x = 1.171
 - (C) x = 1.198
 - (D) x = 2.896

- 9 A particle moving in simple harmonic motion starts from rest at a distance 6 metres from the centre of oscillation. The period is 4π seconds. What is the time taken to move to a point 3 metres from the origin?
 - (A) $t = \frac{\pi}{3}$
 - (B) $t = \frac{\pi}{6}$
 - $(C) \quad t = \frac{2\pi}{3}$
 - $(D) \quad t = \frac{5\pi}{6}$
- 10 An object moves in a straight line so that at time t its displacement from a fixed origin is x and its velocity is ν . The acceleration is 5-6x. Which of the following is the correct equation for velocity given that $\nu = 2$ when x = 1?
 - $(A) \quad v = 5x 3x^2$
 - (B) $v = \sqrt{5x 3x^2}$
 - (C) $v = \sqrt{10x 6x^2}$
 - (D) $v = \sqrt{20x 12x^2}$

Section II

60 marks
Attempt Questions 11 □ 14
Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 11 (15 marks)

Marks

(a) Use the substitution $u = 1 - x^2$ to evaluate $\int_2^3 \frac{2x}{(1 - x^2)} dx$.

2

(b) Solve $\frac{3}{x-2} \le 5$.

2

(c)

Not to scale

In the diagram PQ and RQ are tangents to the circle touching the circle at B and C respectively. $\angle PQR = 50^{\circ}$

(i) Show that $\angle QCB = 65^{\circ}$

2

(ii) Hence find the value of $\angle CAB$

1

Marks

2

2

- (d) Given that $\int_0^{\frac{1}{3}} \frac{dx}{1 + 9x^2} = n\pi$, find *n*.
- Express $8\cos x + 6\sin x$ in the form $R\cos(x-\alpha)$ where α is in (e) (i)
 - Hence or otherwise, solve the equation $8\cos x + 6\sin x = 10$ for (ii) $0 \le x \le 2\pi$. Answer correct to two decimal places.
- (f) The acute angle between the lines 3x y + 7 = 0 and mx y + 1 = 0 is 45°. 2 Find the possible values of m.

(a)	A golfer hits a golf ball lying on a horizontal fairway. The ball passes over a 2.25 metre high tree after 1.5 seconds. The tree is 60 metres away from the

- all passes over a
- point from which the ball was hit. Take $g = 10 \text{ ms}^{-1}$. Derive the expressions for the vertical and horizontal components of
- the displacement of the ball from the point of projection.

How far from where the golfer hits it does the ball land?

Calculate the angle of projection. 2

Consider the function $y = \frac{1}{2}\cos^{-1}(x-1)$.

Question 12 (15 marks)

- What is the domain and range of the function?
 - Sketch the graph of the function showing the coordinates of the
- The region in the first quadrant bounded by the curve $y = \frac{1}{2}\cos^{-1}(x-1)$ and the coordinate axes is rotated through 360° 3 about the y-axis. Find the volume of the solid of revolution. Express your answer in simplest exact form.
- Show that $\cos 4x = 8(\cos^4 x \cos^2 x) + 1$
 - Hence or otherwise solve $\cos^2 x \cos^4 x = \frac{1}{16}$ for $0 \le x \le \frac{\pi}{2}$.

Que	stion 13	3 (15 marks)	Marks
(a)	Consid	der the function $f(x) = x \log_e x - 1$ with $x > 0$	
	(i)	What is the stationary point and determine its nature?	2
	(ii)	Let $x = 2$ be a first approximation to the root. Use Newton's method with one application to find the x-intercept.	1
	(iii)	Why is the curve always concave upwards?	1
	(iv)	Sketch the curve, showing all its main features.	2
(b)		mos of tea is cooling in a room of constant temperature 22° C. At time tes its temperature T decreases according to the equation	,
		$\frac{dT}{dt} = -k(T - 22)$	
	where	t is the time in minutes and k is a positive constant.	
	The in minute	itial temperature of the tea is 80°C and it cools to 60°C after 10 es.	
	(i)	Verify that $T = 22 + Ae^{-kt}$ is a solution of this equation, where A is a constant.	1
	(ii)	Find the values of A and k .	2
	(iii)	How long will it take for the temperature of the tea to cool to 30°C? Answer correct to the nearest minute.	2
(c)	Five di	ifferent fair dice are thrown together.	
	(i)	What is the probability the five scores are all different?	2
	(ii)	What is the probability the five scores include at most one six?	2

Que	estion :	14 (15 marks)	Marks
(a)	displ	acceleration of a particle is given by $a = 2x^3 + 2x$ where x is the accement. The particle starts from a position 2 metres to the right of the n with an initial velocity of 5 m/s.	
	(i)	Show that $v = x^2 + 1$	2
	(ii)	Hence find an expression for x in terms of t .	. 2
(b)		(p, p^2) and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$. M is the oint of PQ .	
	(i)	Show that $(p-q)^2 = 2(p^2 + q^2) - (p+q)^2$	1
	(ii)	If P and Q move on the parabola so that $p-q=1$, show that the locus of M is the parabola $x^2=4y-1$.	2
	(iii)	What is the focus of the locus of M?	1
(c)		mathematical induction to prove that $7^n - 1$ is divisible by 6 for positive ral values of n .	3
(d)	(i)	Expand $\left(x + \frac{1}{x}\right)^5$ in descending powers of x.	1
•	(iii)	If $x + \frac{1}{x} = n$, express $x^5 + \frac{1}{x^5}$ in terms of n	3

End of paper

ACE Examination 2013 HSC Mathematics Extension 1 Yearly Examination Worked solutions and marking guidelines

Section I			
	Solution	Criteria	
1	$\int_{\frac{3}{\sqrt{3}}}^{3\sqrt{3}} \frac{dx}{x^2 + 9} = \left[\frac{1}{3} \tan^{-1} \frac{x}{3} \right]_{\frac{3}{\sqrt{3}}}^{3\sqrt{3}}$ $= \frac{1}{3} \left(\tan^{-1} \sqrt{3} - \tan^{-1} \frac{1}{\sqrt{3}} \right)$ $= \frac{1}{3} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\pi}{18}$	1 Mark: A	
2	$x = \frac{mx_2 + nx_1}{m + n} \qquad y = \frac{my_2 + ny_1}{m + n}$ $= \frac{-1 \times -2 + 3 \times -6}{-1 + 3} = -8 \qquad = \frac{-1 \times -10 + 3 \times 4}{-1 + 3} = 11$ The coordinates of point are (-8,11)	1 Mark: B	
3	$f(x) = 3x^{2} \cos^{-1} 3x$ $= 3x^{2} \frac{-1}{\sqrt{\frac{1}{9} - x^{2}}} + 6x \cos^{-1} 3x$ $= \frac{-9x^{2}}{\sqrt{1 - 9x^{2}}} + 6x \cos^{-1} 3x$	1 Mark: D	
4	For $3x-2y+1=0$ then $m=\frac{3}{2}$ Angle the line makes with the x-axis $\tan \theta = \frac{3}{2}$ $\theta = 56.30993247 \approx 56^{\circ}$ Angle the line makes with the y-axis $90^{\circ} - 56^{\circ} = 34^{\circ}$	1 Mark: B	
5	$P(RR) = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$ P(Two red exactly 3 times) = ${}^{5}C_{3} \left(\frac{2}{7}\right)^{3} \left(\frac{5}{7}\right)^{2}$ = 0.1190	1 Mark: C	

6	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = \frac{-5}{1} = -5$ $\alpha\beta\gamma = -\frac{d}{a} = -\frac{1}{1} = -1$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$ $= \frac{-5}{-1} = 5$	1 Mark: D
7	$\int (2\sin^2 x - x^2) dx = \int 2 \times \frac{1}{2} (1 - \cos 2x) - x^2 dx$ $= x - \frac{1}{2} \sin 2x - \frac{x^3}{3} + c$	1 Mark: B
8	$f(x) = \cos x - \frac{x}{3}$ $f'(x) = -\sin x - \frac{1}{3}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.1 - \frac{\cos 1.1 - \frac{1.1}{3}}{-\sin 1.1 - \frac{1}{3}}$ $= 1.170989437 = 1.171$	1 Mark: B
9	$T = \frac{2\pi}{n} \text{ or } 4\pi = \frac{2\pi}{n} \text{ or } n = \frac{1}{2}$ Amplitude is 6 metres $x = a\cos(nt + \alpha)$ $= 6\cos(\frac{1}{2}t + \alpha)$ $= 6\cos(\frac{1}{2}t) \text{when } t = 0, \ x = 6 \text{ implies } \alpha = 0$ When $x = 3$ $3 = 6\cos\frac{1}{2}t$ $\cos\frac{1}{2}t = \frac{1}{2}$ $\frac{1}{2}t = \frac{\pi}{3} \text{ or } t = \frac{2\pi}{3}$	1 Mark: C
10	$a = 5 - 6x$ $v^{2} = 2 \int (5 - 6x) dx$ $= 10x - 6x^{2} + c$ When $x = 1$, $v = 2$ then $c = 0$ $v^{2} = 10x - 6x^{2}$ $v = \sqrt{10x - 6x^{2}}$ (conditions indicate positive solution)	1 Mark: C

Section	Section II			
11(a)	$\int_{2}^{3} \frac{2x}{(1-x^{2})} dx = \int_{3}^{8} -\frac{1}{u^{2}} du$	2 Marks: Correct answer.		
	$\frac{du}{dx} = -2x -du = 2xdx x = 3 then u = -8 x = 2 then u = -3 = \begin{bmatrix} u^{-1} \end{bmatrix}_{-3}^{-8} = -\frac{1}{8} + \frac{1}{3} = \frac{5}{24}$	1 Mark: Sets up the integration using the substitution		
11(b)	$(x-2)^2 \times \frac{3}{(x-2)} \le 5 \times (x-2)^2$	2 Marks: Correct answer.		
	$(x-2)3 \le 5(x-2)^2 x \ne 2$			
	$(x-2)(3-5x+10) \le 0$	1 Mark: Finds		
	$(x-2)(13-5x) \le 0$	one correct solution. Or multiplies both sides of the		
	-0.5 3 4 x	inequality by $(x-2)^2$.		
	$x < 2$ and $x \ge \frac{13}{5}$			
11(c) (i)	<i>PQ</i> and <i>RQ</i> are tangents $QB = QC \text{ (Tangents from an external point are equal)}$ ∴ ΔCQB is isosceles (two equal sides)	2 Marks: Correct answer.		
	∴ ∠QBC = ∠QCB (base angles of an isosceles triangle are equal) ∠PQR + ∠QBC + ∠QCB = 180 (angle sum of triangle is 180) $50^{\circ} + \angle QBC + \angle QCB = 180$	1 Mark: Makes some progress towards the solution.		
	$\angle QCB = \angle QBC = 65^{\circ}$			
11(c) (ii)	$\angle CAB = 65^{\circ}$ (Angle between a tangent and a chord is equal to the angle in the alternate segment)	1 Mark: Correct answer.		
11(d)	$\int_0^{\frac{1}{3}} \frac{dx}{1+9x^2} = \frac{1}{3} \left[\tan^{-1} 3x \right]_0^{\frac{1}{3}}$	2 Marks: Correct answer.		
	$= \frac{1}{3} \left(\tan^{-1} 1 - \tan^{-1} 0 \right)$ $= \frac{1}{3} \left(\frac{\pi}{4} - 0 \right) = \frac{1\pi}{12}$ Therefore $n = \frac{1}{12}$	1 Mark: Shows some understanding of the problem.		

11/ \]
11(e) (i)	$R\cos(x-\alpha) = 8\cos x + 6\sin x$	2 Marks: Correct
	$R\cos(x-\alpha) = R\cos x \cos \alpha + R\sin x \sin \alpha$	answer.
	Hence $R \cos \alpha = 8$ and $R \sin \alpha = 6$	
	Dividing these equations $\tan \alpha = \frac{6}{8}$	1 Mark: Determines the
	$\alpha = \tan^{-1} \frac{3}{4} \text{ or } 0.6435$	value of α or R
	Squaring and adding the equations $R^2 = 6^2 + 8^2$	
	R = 10	
	$8\sin x + 6\cos x = 10\cos(x - \tan^{-1}\frac{3}{4})$	·
11(e) (ii)	$10\cos(x-\tan^{-1}\frac{3}{4})=10$ from (i)	2 Marks: Correct answer.
	$\cos(x - \tan^{-1}\frac{3}{4}) = 1$ $x - \tan^{-1}\frac{3}{4} = 0 \text{ or } 2\pi$ $x = \tan^{-1}\frac{3}{4} \text{ or } 2\pi + \tan^{-1}\frac{3}{4}$ $x = 0.64 \text{ or } x = 6.93$	1 Mark: Finds one of the solutions or makes significant progress towards the solution.
11(f)	For $3x - y + 7 = 0$ then $m_1 = 3$ For $mx - y + 1 = 0$ then $m_2 = m$	2 Marks: Correct answer.
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $\tan 45 = \left \frac{3 - m}{1 + 3 \times m} \right $ $1 = \left \frac{3 - m}{1 + 3m} \right $	1 Mark: Uses the formula for the angle between 2 lines with at least one correct value.
	$\begin{vmatrix} \frac{3-m}{1+3m} = 1 & \text{or } \frac{3-m}{1+3m} = -1 \\ 3-m = 1+3m & 3-m = -1-3m \\ 4m = 2 & 2m = -4 \end{vmatrix}$	
	$4m = 2$ $m = \frac{1}{2}$ $m = -2$	
	I.	

12(a)	Horizontal Motion	
(i)	$\ddot{x} = 0$	2 Marks:
	$\dot{x} = c_1 \text{ (when } t = 0, \dot{x} = v \cos \theta)$	Correct answer.
	$\dot{x} = v \cos \theta$	
	$x = v\cos\theta t + c_2 \text{ (when } t = 0, x = 0)$	
	$x = v \cos \theta t$	
	Vertical Motion	1 Mark:
	$\ddot{y} = -10$	Derives either the horizontal
	$\dot{y} = -10t + c_1 \text{(when } t = 0, \dot{y} = v \sin \theta\text{)}$	or vertical
	$\dot{y} = -10t + v\sin\theta$	equations of
	$y = -5t^2 + v \sin \theta t + c_2$ (when $t = 0, y = 0$)	motion.
	$y = -5t^2 + v\sin\theta t$,
12(a)	when $x = 60$, $t = 1.5$ when $y = 2.25$, $t = 1.5$	2 Marks:
(ii)	$x = v\cos\theta t \qquad \qquad y = -5t^2 + v\sin\theta t$	Correct answer.
	$60 = v \cos \theta \times 1.5$ $2.25 = -5 \times 1.5^2 + v \sin \theta \times 1.5$	
	$v\cos\theta = 40 (1) \qquad v\sin\theta = 9 (2)$	
	Equation (2) \div (1)	
	$\frac{v\sin\theta}{v\cos\theta} = \frac{9}{40}$	1 Mark:
	$\frac{\partial v \cos \theta}{\partial t} = \frac{1}{40}$	Calculates the
	$\tan \theta = \frac{9}{40}$	value of $v\cos\theta$ or $v\sin\theta$.
	10	or vsmb.
	$\theta = 12.68038349 = 12^{\circ}41^{\circ}$	
12(a)	Angle of projection is 12°41'	
(iii)	Ball lands when $y = 0$	2 Marks:
` ′	$-5t^2 + v\sin\theta t = 0$	Correct answer.
	$t(-5t + v\sin\theta) = 0$	
	Hence $t = 0$ (initially) or $-5t + v \sin \theta = 0$ or $t = \frac{v \sin \theta}{5}$	
	Now from eqn (2) $v \sin \theta = 9$	
	Therefore $t = \frac{9}{5}$	1 Mark: Makes some progress
	Distance travelled by the ball	towards the solution.
	$x = v \cos \theta t$ (using eqn (1) $v \cos \theta = 40$)	
	$=40\times\frac{9}{5}$	
	, J	
	= 72 m	.
	The golfer hits the ball 72 metres	

12(b)	Domain: $-1 \le x - 1 \le 1$ or $0 \le x \le 2$.	2 Marks:
(i)	Range: $0 \le 2y \le \pi$ or $0 \le y \le \frac{\pi}{2}$	Correct answer.
12(b) (ii)	7 <u>π</u> 1	1 Mark: Correct answer.
	1 2 x	
12(b) (iii)	$x = 1 + \cos 2y$	3 Marks: Correct answer.
	$V = \pi \int_0^{\frac{\pi}{2}} (1 + \cos 2y)^2 dy$ $= \pi \int_0^{\frac{\pi}{2}} (1 + 2\cos 2y + \cos^2 2y) dy$	2 Marks: Calculates the primitive
	$= \pi \int_0^{\frac{\pi}{2}} (1 + 2\cos 2y + \frac{1}{2}(1 + \cos 4y)dy$ $= \pi \left[\frac{3}{2}y + \sin 2y + \frac{1}{8}\sin 4y\right]^{\frac{\pi}{2}}$	function. 1 Mark: Sets up the integral in
	$= \pi \left[\frac{3}{2} \times \frac{\pi}{2} + \sin 2y + \frac{1}{8} \sin 2y \right]_{0}$ $= \pi \left[\left(\frac{3}{2} \times \frac{\pi}{2} + \sin \pi + \frac{1}{8} \sin 2\pi \right) - \left(\frac{3}{2} \times 0 + \sin 0 + \frac{1}{8} \sin 0 \right) \right]$ $= \frac{3}{4} \pi^{2}$	terms of y
12(c) (i)	$\cos 4x = 2\cos^2 2x - 1$	1 Mark: Correct
	$= 2 \times (2\cos^2 x - 1)^2 - 1$ $= 2 \times (4\cos^4 x - 4\cos^2 x + 1) - 1$ $= 8(\cos^4 x - \cos^2 x) + 1$	answer.
12(c) (ii)	$\cos 4x = 8(\cos^4 x - \cos^2 x) + 1$ $\cos^4 x - \cos^2 x = \frac{\cos 4x - 1}{8}$	2 Marks: Correct answer.
	$\cos^2 x - \cos^4 x = \frac{1 - \cos 4x}{8}$	1 Mark: Makes some progress towards the
	Therefore $\frac{1-\cos 4x}{8} = \frac{1}{16}$	solution.
	$\cos 4x = \frac{1}{2}$ $\pi \qquad 5\pi$	
	$4x = \frac{\pi}{3} \text{ or } 4x = \frac{5\pi}{3}$ $\pi = 5\pi$	
	$x = \frac{\pi}{12} \text{ or } x = \frac{5\pi}{12}$	

		1
13(a) (i)	$f(x) = x \log_e x - 1$	2 Marks: Correct
	$f'(x) = x \times \frac{1}{x} + \log_e x \times 1$	answer.
	$=\log_e x + 1$	
	Stationary points $f'(x) = 0$ When $x = \frac{1}{e}$ $\log_e x + 1 = 0$ $\log_e x = -1$ $x = \frac{1}{e}$ $y = \frac{1}{e}\log_e \frac{1}{e} - 1$ $x = -1$	1 Mark: Determines the stationary point or makes similar progress.
	Stationary point is $(\frac{1}{e}, -\frac{1}{e} - 1)$	
	$f''(x) = \frac{1}{x}$	
	At $(\frac{1}{e}, -\frac{1}{e} - 1)$, $f''(\frac{1}{e}) = e > 0$, Minimum stationary point	
13(a) (ii)	$f(x) = x \log_e x - 1 \qquad f'(x) = \log_e x + 1$	1 Mark: Correct
(11)	$f(2) = 2\log_e 2 - 1$ $f'(2) = \log_e 2 + 1$	answer.
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	
	$=2-\frac{2\log_e 2-1}{\log_e 2+1}=1.771848327$	
13(a) (iii)	$f''(x) = \frac{1}{x} > 0 \text{ as } x > 0$	1 Mark: Correct answer.
124	Curve is always concave up.	1 100
13(a) (iv)	4 7	2 Marks: Correct answer.
	3+	
	$\begin{vmatrix} 2+\\1-\\ < \end{vmatrix} + \begin{vmatrix} 1+\\ \end{vmatrix} > x$	1 Mark: Shows the x or y intercepts.
	$\begin{bmatrix} -1 & 1 & 2 & 3 \\ -2 & & & \end{bmatrix}$	
13(b) (i)	$T = 22 + Ae^{-kt}$ or $Ae^{-kt} = T - 22$	1 Mark: Correct answer.
	$\frac{dT}{dt} = -kAe^{-kt}$,
	=-k(T-22)	

13(b) (ii)	Initially $t = 0$ and $T = 80$,	2 Marks: Correct
(11)	$T = 22 + Ae^{-kt}$	answer.
	$80 = 22 + Ae^{-k \times 0}$	
	A = 58	
	Also $t = 10$ and $T = 60$	1 Mark: Finds the
	$60 = 22 + 58e^{-k \times 10}$	value of A or shows similar
	$e^{-10k} = \frac{38}{58}$	understanding of
	58	the problem.
	$-10k = \log_e \frac{38}{58}$	
	$k = -\frac{1}{10}\log_e \frac{38}{58}$	
	10 36	
	$=\frac{1}{10}\log_e \frac{58}{38}$	
	10 38 = 0.042285685	
13(b)	We need to find t when $T = 30$	
(iii)	$30 = 22 + 58e^{-kt}$	2 Marks: Correct answer.
		answer.
	$e^{-kt} = \frac{8}{58}$	
	4	1 Mark:
	$-kt = \log_e \frac{4}{29}$	Determines the
·	$t = -\frac{1}{k} \log_e \frac{4}{20}$	value of e^{-kt} .
	n 23	
	= 46.84804 ≈ 47 minutes	
12(-)	It will take about 47 minutes for the tea to cool to 30°C	
13(c) (i)	Number of possible outcomes = $6 \times 6 \times 6 \times 6 \times 6 = 6^{5}$	2 Marks: Correct
	Different scores = $6 \times 5 \times 4 \times 3 \times 2$	answer.
	$P(\text{all different}) = \frac{6 \times 5 \times 4 \times 3 \times 2}{6^5}$	134.4.01
	, 0	1 Mark: Shows some
	$=\frac{5}{54}$	understanding.
13(c)	n(c) 1 and n(N) (c) 5	2 Marks: Correct
(ii)	$P(6) = \frac{1}{6}$ and $P(\text{Not } 6) = \frac{5}{6}$	answer.
	$P(0 \text{ or } 1 \text{ six}) = {}^{5}C_{0} \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{5} + {}^{5}C_{1} \left(\frac{1}{6}\right)^{1} \left(\frac{5}{6}\right)^{4}$	1 Montes
ŀ	$\begin{bmatrix} 1 & 0 & 1 & 3 & 1 \\ 0 & 1 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 6 \end{bmatrix} \begin{bmatrix} \overline{6} \end{bmatrix}$	1 Mark: Calculates the
	$=\frac{3125}{3888}$	probability for no
	·	6 and exactly one
	≈ 0.804	6.

1465		1
14(a) (i)	$a = 2x^3 + 2x$	2 Marks: Correct
	$v^2 = 2\int (2x^3 + 2x) dx$	answer.
	$v^2 = 2(\frac{x^4}{2} + x^2) + c$	1 Mark:
	$v^2 = 2(\frac{1}{2} + x^2) + c$	Determines
	wy 5 d 5 ² 02 ²⁴ 0 ²	$\begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix}$
	When $x = 2$, $v = 5$ then $5^2 = 2(\frac{2^4}{2} + 2^2) + c$	$v^2 = 2(\frac{x^4}{2} + x^2) + c$
	25 = 16 + 8 + c	or makes some
	c=1	progress towards the solution.
	$v^2 = 2(\frac{x^4}{2} + x^2) + 1$	ino soration.
	$=x^4+2x^2+1$	
	$=(x^2+1)^2$	
	$v = x^2 + 1$	
	Note: initial value of ν is positive hence $\nu \neq -(x^2 + 1)$	
14(a)	_	2 Marks: Correct
(ii)	$\frac{dx}{dt} = x^2 + 1$	answer.
	dt 1	
	$\frac{dt}{dx} = \frac{1}{x^2 + 1}$	1 Mark:
	$t = \int_{\sqrt{2}-1}^{1} dx$	Determines
	, ² ⁺¹	$t = \tan^{-1} x + c$ or makes some
	$t = \tan^{-1} x + c$	progress towards
	When $x = 2$, $t = 0$	the solution.
	$0 = \tan^{-1} 2 + c$	
	$c = -\tan^{-1} 2$	
	$t = \tan^{-1} x - \tan^{-1} 2$	
	$\tan^{-1} x = t + \tan^{-1} 2$	
	$x = \tan(t + \tan^{-1} 2)$	
	$t + \tan^{-1} 2$	
	$x = \frac{t + \tan^{-1} 2}{1 - 2 \tan t}$	
14(b)	RHS = $2(p^2 + q^2) - (p+q)^2$	1 Mark: Correct
(i)	$=2p^2+2q^2-p^2-2pq-q^2$	answer.
	$= p^2 - 2pq + q^2$	
	$=(p-q)^2$	
	= LHS	
L		

	ANNAU TOTAL	
14(b) (ii)	Coordinates of $M\left(\frac{2p+2q}{2}, \frac{p^2+q^2}{2}\right)$ or $\left(p+q, \frac{p^2+q^2}{2}\right)$	2 Marks: Correct answer.
	Using the result in (i) and $p-q=1$ (given) $(p-q)^2 = 2(p^2+q^2) - (p+q)^2$ $1 = 2(2y) - (x)^2$ $x^2 = 4y - 1$ Therefore the locus of M is the parabola $x^2 = 4y - 1$	1 Mark: Determines the coordinates of <i>M</i> or makes some progress.
14(b) (iii)	Now $x^2 = 4y - 1$ = $4(y - \frac{1}{4})$ Focal length is 1, vertex $(0, \frac{1}{4})$ and parabola is concave up	1 Mark: Correct answer.
	Focus is $(0, \frac{5}{4})$	
14(c) (i)	Step 1: To prove the statement true for $n = 1$ $7^n - 1 = 7^1 - 1 = 6$ Divisible by 16	3 Marks: Correct answer.
	Result is true for $n = 1$ Step 2: Assume the result true for $n = k$ $7^n - 1 = 6P$ where P is an integer. Hence $7^k = 6P + 1$ - (1)	2 Marks: Proves the result true for $n = 1$ and attempts to use the result of $n = k$ to prove
	To prove the result is true for $n = k + 1$ $7^{(k+1)} - 1 = 6Q$ where Q is an integer. LHS = $7^{(k+1)} - 1$	the result for $n = k + 1$.
	$= 7^{k} \times 7 - 1$ $= 7 \times (6P + 1) - 1 \text{ from } (1)$ $= 7(6P) + 7 - 1$ $= 6(7P + 1)$	1 Mark: Proves the result true for $n = 1$.
	= 6Q $= RHS$ Q is an integer as P and k are integers. Result is true for $n = k+1$ if true for $n = k$	
	Step 3: Result true by principle of mathematical induction.	

,	14(d) (i)	$\left(x + \frac{1}{x}\right)^5 = x^5 + 5x^4 \left(\frac{1}{x}\right) + 10x^3 \left(\frac{1}{x}\right)^2 + 10x^2 \left(\frac{1}{x}\right)^3 + 5x \left(\frac{1}{x}\right)^4 + $	1 Mark: Correct answer.
	14(d) (ii)	$\left(x + \frac{1}{x}\right)^{5} = x^{5} + \left(\frac{1}{x}\right)^{5} + 5\left[x^{3} + \left(\frac{1}{x}\right)^{3}\right] + 10\left(x + \frac{1}{x}\right)$ Now $x^{3} + \left(\frac{1}{x}\right)^{3} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \left(\frac{1}{x}\right)^{2}\right)$	3 Marks: Correct answer.
		$= \left(x + \frac{1}{x}\right) \left(\left(x + \frac{1}{x}\right)^2 - 3\right)$ If $x + \frac{1}{x} = n$	2 Marks: Makes significant progress towards the solution.
		$\left(x + \frac{1}{x}\right)^{5} = x^{5} + \left(\frac{1}{x}\right)^{5} + 5\left[x^{3} + \left(\frac{1}{x}\right)^{3}\right] + 10\left(x + \frac{1}{x}\right)$ $n^{5} = x^{5} + \left(\frac{1}{x}\right)^{5} + 5\left[n(n^{2} - 3)\right] + 10n$	1 Mark: Groups in pairs $x^{a} + \left(\frac{1}{x}\right)^{a}$
		$x^5 + \left(\frac{1}{x}\right)^5 = n^5 - 5n^3 + 5n$	