×1				_		atio	
1382	Δ	(<u>_</u>	- Va	min	つもいへ	nc
2001	$\overline{}$	_	_	LAG		atiu	113

Student Name:	

2013 YEAR 12 YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

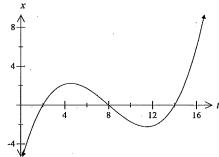
NOTE: $\ln x = \log_e x$, x > 0

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is $\frac{1+\sqrt{5}}{7-2\sqrt{5}}$ as a fraction with a rational denominator?
 - (A) $\frac{12+9\sqrt{5}}{29}$
 - (B) $\frac{17+9\sqrt{5}}{29}$
 - (C) $\frac{12+9\sqrt{5}}{69}$
 - (D) $\frac{17+9\sqrt{5}}{69}$
- 2 What values of x is the curve $f(x) = x^3 + x^2$ concave down?
 - (A) $x < -\frac{1}{3}$
 - (B) $x > -\frac{1}{3}$
 - (C) x < -3
 - (D) x > 3
- 3 What is the solution to the equation $9^x 28(3^x) + 27 = 0$?
 - (A) x=1 and x=3
 - (B) x = 1 and x = 4
 - (C) x = 0 and x = 3
 - (D) x = 0 and x = 4
- 4 In a business the employees are 55% male and 45% female. Two employees are selected at random. What is the probability that both are male?
 - (A) 0.2025
 - (B) 0.2475
 - (C) 0.3025
 - (D) 0.5555


5 The table below shows the values of a function f(x) for five values of x.

x	1	1.5	2	2.5	3
f(x)	4	1	-2	- 3	8

What value is an estimate for $\int_{-\infty}^{\infty} f(x)dx$ using Simpson's rule with these five values?

- (A) 4
- (B) 6
- (C) 8
- (D) 12
- 6 What is the value of $\sum_{r=1}^{50} (2r-4)$?
 - (A) · 96
 - (B) 2350
 - (C) 2450
 - (D) 4700
- 7 What is the derivative of $\frac{\tan x}{x}$ with respect to x?
 - $(A) \quad \frac{-\sec^2 x}{x^2}$
 - (B) $\frac{\sec^2 x}{x^2}$
 - (C) $\frac{x \sec^2 x \tan x}{x^2}$
 - (D) $\frac{\tan x x \sec^2 x}{x^2}$
- 8 What is the value of k if the equation $5x^2 + 2x + k = 0$ has -2 as one of its roots?
 - (A) k = -24
 - (B) k = -16
 - (C) k = 16
 - (D) k = 24

9 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?

- (A) t = 4.5 and t = 11.5
- (B) t = 0
- (C) t = 2, t = 8 and t = 14
- (D) t = 1.5 and t = 8
- 10 What is solution to the equation $\frac{\cos \theta}{\sqrt{3}} = -\frac{1}{2}$ for $0^{\circ} \le \theta \le 360^{\circ}$?
 - (A) $\theta = 30^{\circ} \text{ or } 330^{\circ}$
 - (B) $\theta = 60^{\circ} \text{ or } 300^{\circ}$
 - (C) $\theta = 150^{\circ} \text{ or } 210^{\circ}$
 - (D) $\theta = 120^{\circ} \text{ or } 240^{\circ}$

Section II

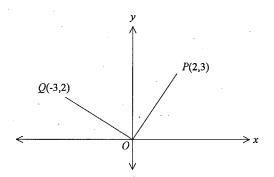
90 marks

Attempt Questions 11 🗆 16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.


Que	estion 1	11 (15 marks)	Marks
(a)	Grap	h on a number line the values of x for which $ x-2 \le 1$.	2
(b)	Find	integers a and b such that $(5-\sqrt{3})^2 = a+b\sqrt{3}$.	2
(c)	Diffe	rentiate with respect to x.	
	(i)	$\left(x^2+3\right)^4$	1
	(ii)	$x^2 \log_e x$	2
			ž
(d)	Find	the equation of the tangent to the curve $y = x^2 - 5x$ at the point $(1, -4)$?	2
(e)	For th	ne parabola $(y-1)^2 = 8x+16$.	
	(i)	Find the coordinates of the vertex and the focus.	2 .
	(ii)	Sketch the graph of the parabola showing the intercepts.	2
	(iii)	What is the axis of symmetry?	1
	(iv)	Determine the equation of the directrix.	1

Question 12 (15marks)

Marks

1

(a)

The diagram shows two points P(2,3) and Q(-3,2) on the number plane.

- (i) What is the gradient of the line QO?
- (ii) Show that PO is perpendicular to QO
- (iii) OPRQ is a square in which OQ is parallel to PR. Show that the equation of PR is 2x+3y-13=0.
- (iv) The point R lies on the line x = -1. What are the coordinates of R?
- The point R los of the line x = -1. What are the coordinates of R:
- (v) Show that the length of the line PR is $\sqrt{13}$ units.
- (vi) Find the area of the square OPRQ.
- (b) The third term of an arithmetic series is 32 and the seventh term is 12.
 - (i) What is the common difference?
 - (ii) Find the sum of the first ten terms.
- 4

(c) Find:

- (i) $\int \sec^2 7x dx$
 - (ii) $\int_{1}^{2} \frac{5}{x+2} dx$
- (d) Sketch the curve $y = 1 \cos 2x$ for $0 \le x \le \pi$

2

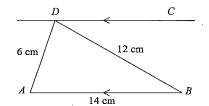
2

Question	13	(15	marks)
----------	----	-----	--------

Marks

2

2

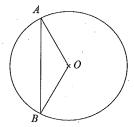

- (a) The roots of the equation $2x^2 5x + 12 = 0$ are α and β . Find the value of:
 - (i) $\alpha + \beta$

.

- (n) $\alpha \rho$
- (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$

- 1
- (b) Given that $f''(x) = \frac{2}{x^2} + 2e^{2x}$ and when x = 1, $f'(x) = e^2$ and $f(x) = \frac{e^2}{2}$. Find an expression for f(x) in terms of x.

(c)


Not to scale

In the diagram, AB is parallel to CD, BD is 12 cm, AD is 6 cm and AB is 14 cm

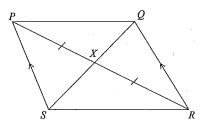
- (i) Use the cosine rule to find the size of $\angle BAD$ to nearest degree.
- Hence find the size of $\angle CDA$, giving reasons for your answer.
- (d) The area bounded by $y^2 = 3 2x x^2$, $y \ge 0$ and between x = -3 and x = 1 is revolved about the x axis. Calculate the volume of the solid formed if this area is rotated about the x axis.

6

(e)

Not to scale

A circle has centre O and radius of 12 cm. The length of arc \overline{AB} is 8π cm.


(i) What is the size of $\angle AOB$? Answer in radians.

- 1 2
- (ii) Find the area of the minor segment cut off by the chord AB.

Question 14 (15 marks)

Marks

(a)

In the diagram above, PX = XR and PS is parallel to QR.

(i) Prove that $\Delta PXS \equiv \Delta RXQ$

(ii) Hence show that PQ = RS.

1

- (b) A function f(x) is defined by $f(x) = -x^2(2x-3)$.
 - i) Find all solutions for f(x) = 0.

- 1
- (ii) Find the stationary points for the curve y = f(x) and determine their nature.
- iii) Sketch the graph of y = f(x) showing the stationary points and x-intercepts.
- 2
- (c) The diagram below shows the graph of $y = \sin 2x$ and $y = \cos x$ $(0 \le x \le \frac{\pi}{2})$

(i) Where do the two curves intersect?

- 2
- (ii) Calculate the area between $y = \sin 2x$, $y = \cos x$ and the x-axis.
- 3

Que	estion 1	15 (15 marks)	Marks
(a)		copulation P of a certain insect is falling according to the formula $1000e^{-kt}$, where t is in days.	
	(i)	What is the initial population of the insects?	1
	(ii)	Show that $\frac{dP}{dt} = -kP$.	• 1
	(iii)	What is the value of k if it takes 4 days for the number of insects to fall to 1000?	. 2
	(iv)	How long will it take for the number of insects to fall to 10% of the initial number?	2
(b)	select	g contains two blue balls, one red ball, and one white ball. Sandra is one ball from the bag and keeps it hidden. She then selects a second also keeping it hidden.	
	(i)	Find the probability that both the selected balls are blue.	1
	(ii)	Find the probability that at least one of the selected balls is blue.	2
	(iii)	Sandra drops one of the selected balls and she sees that it is blue. What is the probability that the ball that is hidden is also blue?	1
(c)		invests P at 8% per annum compounded annually. He plans to raw \$5000 at the end of each year for six years to cover university fees.	
	(i)	Write down an expression for the amount A_1 remaining in the account following the withdrawal of the first \$5000.	1
	(ii)	Find an expression for the amount $\$A_3$ remaining in the account after the third withdrawal.	2
No. o	(iii)	How much does Colin need to invest if the account balance is to be \$0 at the end of the six years?	2

Qu	estion 1	16 (15 marks)	Marks
(a)	soil is	soil is tipped from a truck onto a pile. The rate, $R \text{ kg/s}$, at which the top solving is given by the expression $R = t(100 - t^2)$ for $0 \le t \le A$, where e time in seconds after the top soil begins to flow.	
	(i)	What is the rate of flow after 5 seconds?	
	(1)	what is the face of now after 5 seconds?	1
	(ii)	What is the largest value of A for which the expression for R is physically reasonable?	1
	(iii)	Find the maximum rate of flow of the top soil.	3
	(iv)	When the top soil starts to flow, the pile already contains 200 kg of top soil. Show that the expression for the mass M of top soil in the	1
		pile at time t is given by $M = 50t - \frac{t^4}{4} + 200$.	•
	(v)	Calculate the total weight of the top soil that was tipped from the truck.	2
(b)	A part $a = -2$	cicle moves so that its acceleration, $a \text{ ms}^{-2}$ after t seconds is given by 2. Initially the particle is located at $x = -3$ and its velocity is 4 ms ⁻¹	
	(i)	Find an expression for the velocity of the particle after t seconds.	1
	(ii)	Find an expression for the position of the particle after t seconds.	1
	(iii)	Determine when the particle is at rest.	1
	(iv)	At what time will the particle first be at the origin?	2
	(v)	Sketch displacement (x) as a function of time (t)	2

End of paper

ACE Examination 2013

HSC Mathematics Yearly Examination

Worked solutions and marking guidelines

Section	ıI ,	-
	Solution	Criteria
	$\frac{1+\sqrt{5}}{7-2\sqrt{5}} = \frac{1+\sqrt{5}}{7-2\sqrt{5}} \times \frac{7+2\sqrt{5}}{7+2\sqrt{5}}$ $= \frac{7+2\sqrt{5}+7\sqrt{5}+10}{49-20}$ $= \frac{17+9\sqrt{5}}{29}$	1 Mark: B
2	Concave down when $f''(x) < 0$ $f'(x) = 3x^2 + 2x$ f''(x) = 6x + 2 6x + 2 < 0 $x < -\frac{1}{3}$	1 Mark: A
3	Let $m = 3^{x}$ then $m^{2} - 28m + 27 = 0$ (m-27)(m-1) = 0 m = 27 $m = 13^{x} = 27 2^{x} = 1x = 3$ $x = 0$	1 Mark: C
4	$P(MM) = 0.55 \times 0.55$ = 0.3025	1 Mark: C
5	$\int_{2}^{4} f(x)dx = \frac{h}{3} [y_0 + y_4 + 4(y_1 + y_3) + 2y_2]$ $= \frac{1}{3} [4 + 8 + 4 \times (1 + 3) + 2 \times -2]$ $= 4$	1 Mark: A

6	$\sum_{r=1}^{50} (2r-4) = -2 + 0 + 2 + 4 + \dots + 96$ Arithmetic series with $a = -2$, $l = 96$ and $n = 50$ $S_n = \frac{n}{2} (a+l)$ $= \frac{50}{2} (-2 + 96)$ $= 2350$	1 Mark: B
7	$\frac{d}{dx} \left(\frac{\tan x}{x} \right) = \frac{x \sec^2 x - \tan x \times 1}{x^2}$ $= \frac{x \sec^2 x - \tan x}{x^2}$	1 Mark: C
8	Substitute $x = -2$ into $5x^2 + 2x + k = 0$ $5x^2 + 2x + k = 0$ $5 \times (-2)^2 + 2 \times -2 + k = 0$ 20 - 4 + k = 0 k = -16	1 Mark: B
9	Particle at rest if $v = 0$ (stationary points of the curve) $t = 4.5$ and $t = 11.5$	1 Mark: A
10	$\cos \theta = -\frac{\sqrt{3}}{2}$ $\theta = 150^{\circ} \text{ or } 210^{\circ}$	1 Mark: C

Section	ıII	
11(a)	$ x-2 \ge 1$ $x-2 \ge 1$ and $x-2 \le -1$ $x \ge 3$ $x \le 1$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 Marks: Correct answer. 1 Mark: Determines one of the solutions
11(b)	$(5-\sqrt{3})^2 = 25-10\sqrt{3}+3$ = $28-10\sqrt{3}$ = $a+b\sqrt{3}$ Therefore $a = 28$ and $b = -10$	2 Marks: Correct answer. 1 Mark: Expands the binomial or finds a or b.
11(c) (i)	$\frac{d(x^2+3)^4}{dx} = 4(x^2+3)^3 \times 2x$ $= 8x(x^2+3)^3$	1 Mark: Correct answer.
11(c) (ii)	$\frac{d(x^2 \log_e x)}{dx} = x^2 \times \frac{1}{x} + \log_e x \times 2x$ $= x + 2x \log_e x$	2 Marks: Correct answer. 1 Mark: Applies the product rule or differentiates $\log_e x$.
11(d)	$y = x^{2} - 5x$ At the point $(1, -4)$ $\frac{dy}{dx} = 2 \times 1 - 5 = -3$ $\frac{dy}{dx} = 2x - 5$ Point slope formula $y - y_{1} = m(x - x_{1})$ $y - (-4) = -3(x - 1)$ $y = -3x - 1$	2 Marks: Correct answer. 1 Mark: Finding the gradient of the tangent.
11(e) (i)	$(y-1)^2 = 8x+16$ $(y-1)^2 = 4 \times 2 \times (x+2)$ Vertex is (-2,1), focal length is 2 and focus is (0,1)	2 Marks: Correct answer. 1 Mark: Finds the vertex or focus
11(e) (ii)	x-intercepts (y = 0) y-intercepts (x = 0) (0-1) ² = 8x + 16 (y-1) ² = 8x 0 + 16 8x = -15 (y-1) ² = 16 $x = -\frac{15}{8}$ $y-1 = \pm 4$	2 Marks: Correct answer.
	y = 5 or y = -3	Identifies the intercepts.

		1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
11(e) (iii)	Axis of symmetry is $y = 1$	1 Mark: Correct answer.
11(e) (iv)	Directrix is $x = -4$	1 Mark: Correct answer.
12(a) (i)	Gradient of QO $m = \frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{2 - 0}{-3 - 0} = -\frac{2}{3}$	1 Mark: Correct answer.
12(a) (ii)	Gradient of PO $m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{3 - 0}{2 - 0} = \frac{3}{2}$ Perpendicular lines $m_1 m_2 = -1$ $-\frac{2}{3} \times \frac{3}{2} = -1$ True	1 Mark: Correct answer.
12(a) (iii)	Parallel lines have the same gradient. Gradient of PR is $-\frac{2}{3}$ (same as QO) $y-y_1=m(x-x_1)$ $y-3=-\frac{2}{3}(x-2)$ $3y-9=-2x-4$ $2x+3y-13=0$	2 Marks: Correct answer. 1 Mark: Recognises the gradient of <i>PR</i> is - 2/3 or substitutes (2,3) into formula
12(a) (iv)	x = -1 satisfies the equation $2x+3y-13=02x-1+3y-13=03y=15y=5There coordinates of R are (-1,5)$	1 Mark: Correct answer.

12(a)		
(v)	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	1 Mark: Correct answer.
	$=\sqrt{(-1-2)^2+(5-3)^2}$	
	$=\sqrt{9+4}=\sqrt{13}$	
12(a)	$A=s^2$	1 Mark: Correct
(vi)	$=(\sqrt{13})^2=13$ square units	answer;
12(b)	$T_n = a + (n-1)d$	1 Mark: Correct
(i)	$T_3 = a + 2d = 32(1)$	answer.
	$T_{\gamma} = a + 6d = 12(2)$	·
	Eqn (2) – (1)	
	4d = -20	
	d = -5	
12(b)	Required to find the first term	2 Marks: Correct
(ii)	Substitute -5 for d into eqn (1)	answer.
	$a+2\times-5=32, a=42$	136-1-12-1-4
	$S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]$	1 Mark: Finds the value of a or
	4.0	makes some
	$S_{10} = \frac{10}{2} [2 \times 42 + 9 \times -5]$	progress towards
	=195	the solution.
12(c)	1	1 Mark: Correct
(i) ·	$\int \sec^2 7x dx = \frac{1}{7} \tan 7x + c$	answer.
12(c) (ii)	$\int_{-1}^{2} \frac{5}{x+2} dx = 5 \left[\log_{e}(x+2) \right]_{-1}^{2}$	2 Marks: Correct
(11)	- X + Z	answer.
-	$=5\left[\left(\log_{e}4\right)-\left(\log_{e}1\right)\right]$	1 Mark: Determines the
	$=5\log_e 4$	primitive.
12(d)	<i>y</i>	2 Marks: Correct
	2^	answer.
	1+	1 Mark: Shows some
		understanding of
	τ τ	the problem.
	2	
	-1 ↓	
		<u> </u>

13(a) (i)	$\alpha + \beta = -\frac{b}{a}$ $= -\frac{-5}{2} = \frac{5}{2}$	1 Mark: Correct answer.
	2 2	
13(a) (ii)	$\alpha \beta = \frac{c}{a}$ $= \frac{12}{2} = 6$	1 Mark: Correct answer.
13(a) (iii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $= \frac{5}{6} = \frac{5}{12}$	1 Mark: Correct answer.
13(b)	$f''(x) = 2x^{-2} + 2e^{2x}$ $f'(x) = -2x^{-1} + e^{2x} + c$	3 Marks: Correct answer.
	When $x = 1$ then $f'(x) = e^2$	2 7 (- 1
	$e^2 = -2 \times 1 + e^2 + c$	2 Marks: Integrates to find
	c=2	f(x) or makes
	$f'(x) = -2x^{-1} + e^{2x} + 2$	significant
	$f(x) = -2\log_e x + \frac{e^{2x}}{2} + 2x + k$	progress.
	When $x = 1$ then $f(x) = \frac{e^2}{2}$ $\frac{e^2}{2} = -2\log_e 1 + \frac{e^2}{2} + 2 + k$	1 Mark: Integrates to find $f'(x)$ or shows some understanding of
	$k = -2$ $f(x) = -2\log_e x + \frac{e^{2x}}{2} + 2x - 2$	the problem.
13(c)	$\cos \angle BAD = \frac{14^2 + 6^2 - 12^2}{2 \times 14 \times 6}$	2 Marks: Correct
(i)	2×14×6	answer.
	$\angle BAD = 58.41186449$	1 Mark: Uses cosine with at
	≈ 58°	least one correct value.
13(c)	$\angle CDA + 58 = 180$ (co-interior angles supplementary $AB//DC$)	2 Marks: Correct
(ii)	$\angle CDA = 180 - 58$	answer.
	=122°	1 Mark: Finds
L	WARRY CONTRACTOR OF THE CONTRA	$\angle CDA = 122^{\circ}$.

12(1)		
13(d)	$y^2 = 3 - 2x - x^2$	2 Marks: Correct
	$V = \pi \int_a^b y^2 dx$	answer.
	$V = \pi \int_{-3}^{1} 3 - 2x - x^2 dx$	1 Mark: Sets up
	$= \pi \left[3x - x^2 - \frac{x^3}{3} \right]_{-3}^{1}$	the integral to determine the volume.
	$= \pi \left[\left(3 - 1 - \frac{1}{3} \right) - \left(-9 - 9 + 9 \right) \right]$	
	$=\frac{32\pi}{3}$	
13(e) (i)	$l = r\theta$	1 Mark: Correct
	$8\pi = 12\theta$	answer.
	$\theta = \frac{2\pi}{3}$	
13(e) (ii)	$A = \frac{1}{2} \times r^2 \times \theta \qquad A = \frac{1}{2} ab \sin O$	2 Marks: Correct answer.
	$=\frac{1}{2} \times 12^2 \times \frac{2\pi}{3}$ $=\frac{1}{2} \times 12 \times 12 \times \sin \frac{2\pi}{3}$	136.1
	2 3	1 Mark: Determines the
	$= 48\pi \text{ cm}^2$ $= 72 \times \frac{\sqrt{3}}{2} = 36\sqrt{3} \text{ cm}^2$	area of the sector or triangle.
	Area of segment = $48\pi - 36\sqrt{3} \approx 88.44 \text{ cm}^2$	
14(-)		
14(a) (i)	In $\triangle PXS$ and $\triangle RXQ$	3 Marks: Correct answer.
	$\angle PXS = \angle RXQ$ (vertically opposite angles are equal)	2 Marks: Makes
	$\angle PSX = \angle XQR$ (alternate angles are equal, parallel lines)	significant progress towards
	PX = XR (given)	the solution.
	. A DVC _ A DVO (A A C)	1 Mark: One relevant
	$\therefore \Delta PXS \equiv \Delta RXQ \text{ (AAS)}$	statement and reason.
14(a)	PS = RQ (matching sides in congruent triangles)	1 Mark: Correct
(ii)	.: PQRS is a parallelogram (a pair of opposite sides parallel and equal)	answer.
	$\therefore PQ = RS$ (opposite sides in a parallelogram are equal)	
14(b)	$-x^2(2x+3)=0$	1 Mark: Correct
(i)	$x = 0, \ x = -\frac{3}{2}$	answer.
	2	

14(b) (ii)	Stationary points $f'(x) = 0$ $-6x^2 + 6x = 0$	3 Marks: Correct answer.
	-6x(x-1) = 0 $x = 0, x = 1$	2 Marks: Finds the turning points.
	Stationary points are (0,0) and (1,-1).	turning points.
	f''(x) = -12x + 6	
	At $(0,0)$, $f''(0) = 6 > 0$, Minimum stationary point At $(1,1)$, $f''(1) = -6 < 0$, Maximum stationary point	1 Mark: Obtains the first derivative and recognises $f'(x) = 0$.
14(b) (iii)	21 1	2 Marks: Correct answer.
	-1 -1 -2 ×	1 Mark: Makes some progress towards sketching the curve.
14(c) (i)	Solve the equations simultaneously	2 Marks: Correct
	$\sin 2x = \cos x$	answer.
	$2\sin x \cos x = \cos x$ $2\sin x \cos x - \cos x = 0$	1 Mark: Finds one of
	$2\sin x \cos x - \cos x = 0$ $\cos x(2\sin x - 1) = 0$	the points of
	Therefore $\cos x = 0$ $2\sin x = 0$	intersection or the x- coordinates of both
	$x = \frac{\pi}{2}, y = 0 x = \frac{\pi}{6}, y = \frac{\sqrt{3}}{2}$	points.
14(c) (ii)	$A = \int_0^{\pi} \sin 2x dx + \int_{\frac{\pi}{6}}^{\pi} \cos x dx$	3 Marks: Correct answer.
	$= \left[-\frac{\cos 2x}{2} \right]_0^{\frac{\pi}{6}} + \left[\sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$	2 Marks: Makes significant progress.
	$= \left(-\frac{1}{4} - \left(-\frac{1}{2}\right)\right) + \left(1 - \frac{1}{2}\right)$	1 Mark: Correctly sets up one integral
	$=\frac{3}{4}$ square units	•

15(a) (i)	Initial population occurs when $t = 0$. $P = 3000e^{-kt}$ $= 3000e^{-k \times 0} = 3000$	1 Mark: Correct answer.
15(a) (ii)	$P = 3000e^{-kt}$ $\frac{dP}{dt} = -k \times 3000e^{-kt}$ $= -kP$	1 Mark: Correct answer.
15(a) (iii)	When $t = 4$ then $P = 1000$ $1000 = 3000e^{-4k}$ $e^{-4k} = \frac{1}{2}$	2 Marks: Correct answer.
	$e^{2} - \frac{1}{3}$ $\log_{e} e^{-4k} = \log_{e} 0.\dot{3}$ $-4k = \log_{e} 0.\dot{3}$ $k = \frac{\log_{e} 0.\dot{3}}{-4} = 0.2746530722$	1 Mark: Substitutes $t = 4$ and $P = 1000$ into the formula.
15(a) (iv)	We need to find t when $P = 300$. $300 = 3000e^{-kxt}$ $e^{-kt} = 0.1$ $-kt = \log_e 0.1$ $t = -\frac{1}{k}\log_e 0.1$ $= -\frac{\log_e 0.1}{0.274653.}$	2 Marks: Correct answer. 1 Mark: Determines $e^{-kt} = 0.1$ or shows some understanding of the problem.
15(b) (i)	= 8.383613097 \approx 8.4 days $P(BB) = \frac{2}{4} \times \frac{1}{3}$ $= \frac{1}{6}$	1 Mark: Correct answer.
15(b) (ii)	Probability of at least one blue ball is every outcome except selecting red and white balls. $P(\text{at least 1 blue}) = 1 - P(RW + WR)$	2 Marks: Correct answer.
	$=1-(\frac{1}{4}\times\frac{1}{3}+\frac{1}{4}\times\frac{1}{3})$ $=\frac{5}{6}$	1 Mark: Shows some understanding of the problem.

15(b) (iii)	If one of the selected balls is blue, there are 5 possible outcomes only one of which will yield another blue. Sample space = {BB,BR,BW,RB,WB} $P(E) = \frac{1}{5}$	1 Mark: Correct answer.
15(c) (i)	$A = P(1+r)^n$ = $P \times (1+0.08)^1$ = $P(1.08)$ After 1 year $A_1 = P(1.08) - 5000$	1 Mark: Correct answer.
15(c) (ii)	After 2 years $A_2 = (P(1.08) - 5000) \times 1.08 - 5000$ = $P \times 1.08^2 - 5000(1.08 + 1)$	2 Marks: Correct answer.
	After 3 years $A_3 = [(P \times 1.08^2 - 5000(1.08 + 1)] \times 1.08 - 5000$ = $P \times 1.08^3 - 5000(1.08^2 + 1.08 + 1)$	1 Mark: Makes some progress towards the solution.
15(c) (iii)	After 6 years $A_6 = P \times 1.08^6 - 5000(1.08^5 + 1.08^4 + + 1)$ To find P when $A_6 = 0$ $0 = P \times 1.08^6 - 5000 \left(\frac{1.08^6 - 1}{1.08 - 1}\right)$ $0 = P \times 1.08^6 \times 0.08 - 5000(1.08^6 - 1)$	2 Marks: Correct answer.
	$P \times 1.08^{6} \times 0.08 = 5000(1.08^{6} - 1)$ $P = \frac{5000(1.08^{6} - 1)}{1.08^{6} \times 0.08}$ $= $23 \ 114.40$ Colin needs to invest \$23 \ 114.40	1 Mark: Obtains a correct expression for A_6 and uses $A_6 = 0$.

16(a)	When $t = 5$	1 Mark: Correct
(i)		answer.
``	$R = t(100 - t^2)$	
	$= 5 \times (100 - 5^2) = 375$	
	Flow rate is 375 kg/s	
16(a)	The expression is reasonable until $R = 0$	1 Mark: Correct
(ii)	$t(100-t^2) = 0$	answer.
	t = 0, t = 10 (t = -10 is not possible)	
	The largest value of t is 10.	
16(a)	$R = t(100 - t^2) = 100t - t^3$	236.1.0
(iii)	$dR = d^2R$	3 Marks: Correct answer.
	$\frac{dR}{dt} = 100 - 3t^2, \frac{d^2R}{dt^2} = -6t$	answer.
	Maximum occurs at the stationary point $(\frac{dR}{dt} = 0)$.	
	l ui	2 Marks:
	$100 - 3t^2 = 0$	Determines
	$t^2 = \frac{100}{2}$	$t = \frac{10}{\sqrt{3}}$ and tests
	3	for maximum
	$t = \frac{10}{\sqrt{3}}, (t \ge 0)$	value.
	When $t = \frac{10}{\sqrt{3}}$ then $\frac{d^2R}{dt^2} = -6 \times \frac{10}{\sqrt{3}} < 0$ (maximum value)	
	when $t = \frac{1}{\sqrt{3}}$ then $\frac{1}{dt^2} = -0 \times \frac{1}{\sqrt{3}} \times 0$ (maximum value)	1 Mark:
	$\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$	Calculates the first derivative or
	When $t = \frac{10}{\sqrt{3}} R = 100 \times \frac{10}{\sqrt{3}} - \left(\frac{10}{\sqrt{3}}\right)^3$	has some
	1000 1000	understanding of
	$=\frac{1000}{\sqrt{3}} - \frac{1000}{3\sqrt{3}}$	the problem.
	$=\frac{2000}{3\sqrt{3}}$	
	3√3	
	$=\frac{2000\sqrt{3}}{9} \approx 384.9001795$	
	<u>_</u>	
,	Therefore the maximum flow rate is $\frac{2000\sqrt{3}}{9}$ kg/s	
16(a)	Let the mass of the top soil be M.	1 Mark: Correct
(iv)	Then $\frac{dM}{dt} = 100t - t^3$	answer.
	dt	
	$M = 50t - \frac{t^4}{4} + c$	
	When $t = 0$ then $M = 200$ hence $c = 200$	
1		
	$M = 50t - \frac{t^4}{4} + 200$	

16(a)	When $t = 10$	2 Marks: Correct
(v)	Total weight = $\int_0^1 (100t - t^3) dt$	answer.
	$= \left[50t^2 - \frac{t^4}{4} \right]_0^{10}$ $= \left[\left(50 \times 10^2 - \frac{10^4}{4} \right) - 0 \right]$ $= 2500 \text{ kg}$	1 Mark: Shows some understanding.
16(b) (i)	$a = -2$ $v = \int -2dt = -2t + c$	1 Mark: Correct answer.
	When $t = 0$ then $v = 4$ $4 = -2 \times 0 + c$ or $c = 4$ $\therefore v = -2t + 4$	
16(b) (ii)	$x = \int -2t + 4dt$ $= -t^2 + 4t + c$	1 Mark: Correct answer.
	When $t = 0$ then $x = -3$ -3 = 0 + 0 = c or $c = -3\therefore x = -t^2 + 4t - 3$	
16(b) (iii)	Particle at rest when $v = 0$ $v = -2t + 4$ $0 = -2t + 4$ $t = 2$ Therefore the particle is at rest after 2 seconds.	1 Mark: Correct answer.
16(b) (iv)	At the origin when $x = 0$ $x = -t^2 + 4t - 3$	2 Marks: Correct answer.
	$0 = -t^2 + 4t - 3$ $0 = -(t^2 - 4t + 3)$ $0 = -(t - 3)(t - 1)$ $\therefore t = 1 \text{ or } t = 3$ First at the origin when $t = 1$	1 Mark: Determines that $0 = -t^2 + 4t - 3$
16(b) (v)	2 ² 1	2 Marks: Correct answer.
	$\begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$	1 Mark: Intercepts or correct shape.