

2011 YEAR 12 TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Total marks - 120 Attempt Questions 1 - 8

All questions are of equal value

Answer each question in the appropriate writing booklet.

Que	estion 1 (15 marks)	Marks
(a)	By completing the square, find $\int \frac{2}{x^2 + 4x + 13} dx$	2
(b)	Use integration by parts to evaluate $\int 3xe^x dx$.	2
(c)	(i) Find real numbers a , b and c such that $\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$	3
	(ii) Hence find $\int \frac{7x+4}{(x^2+1)(x+2)} dx$	2
(d)	Evaluate $\int_0^1 xe^{-x^2} dx$	2
(e)	Use the substitution $t = \tan \frac{\theta}{2}$ to evaluate $\int_0^{\frac{\pi}{2}} \frac{1}{\cos \theta + 2\sin \theta + 3} d\theta$	4

HSC Mathematics Extension 2

Express your answer correct to 3 significant figures.

Question 2 (15 marks)

Marks

(a) Let z = 1 + 2i and w = -2 + i. Express the following in the form a + ib, where, a and b are real numbers:

(i) zw

1

(ii) $\frac{5}{iw}$

(b) If $z_1 = 4 + i$ and $z_2 = 1 + 2i$ show geometrically how to construct the vectors representing.

(i) $z_1 + z_2$

1

1

- (ii) $z_1 z_2$
- (c) Sketch the locus of z on the Argand diagram where the inequalities $|z-1| \le 3$ and $\text{Im}(z) \ge 3$ hold simultaneously.
- (d) Let $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$. Find z^6 .
- (e) It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where a and b are real numbers.
 - (i) State why 3-i is also a root of P(z).

1 2

3

- (ii) Factorise P(z) over the real numbers.
- Solve the equation $z^2 = i \overline{z}$

Question 3 (15 marks)

Marks

(a) The diagram shows the graph of the function y = f(x).

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = |f(x)|$$

(ii)
$$y = \frac{1}{f(x)}$$

2

(iii)
$$y = (f(x))^2$$

Sketch the graphs of $y = \ln x$ and $y = \frac{1}{x}$ for x > 0.

(ii) Hence sketch the graph of
$$y = \ln x + \frac{1}{x}$$

1

2

- (c) The polynomial equation $x^3 3x^2 x + 2 = 0$ has roots α , β and γ .
 - (i) Find the polynomial equation with roots $2\alpha + \beta + \gamma$, $\alpha + 2\beta + \gamma$ and $\alpha + \beta + 2\gamma$.
 - (ii) Find the polynomial equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

(d) A solid is formed by rotating the region enclosed by the parabola $y^2 = 4ax$, its vertex (0,0) and the line x = a, about the x-axis.

Find the volume of this solid using the method of cylindrical shells.

3

Question 4 (15 marks)

Marks

3

(a)

The point P lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0. The tangent at P meets the tangents at the ends of the major axis at R and T.

- (i) Use the parametric representation of an ellipse to show the equation of the tangent is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$.
- (ii) Show that RT subtends a right angle at either focus.
- (b) A conical pendulum consists of a body P of mass m kg and a string of length I metres. Point A is fixed and the body P rotates in a horizontal circle of radius r and centre O at a constant angular velocity of ω radians per second. OA is vertical and has a length of h metres. The angle OAP is θ radians. The body, P, is subject to a gravitational force of mg newtons. The tension in the string is T newtons.
 - (i) Write down an expression for the vertical component of T.
 - (ii) Show that $\omega^2 = \frac{g}{h}$ by resolving forces.
 - (iii) What is the period of the motion?

(c)

The diagram shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord PO subtends a right angle at the origin.

- (i) Use the parametric representation of the hyperbola to show that $\sin\theta\sin\alpha=-\frac{a^2}{b^2}.$
- (ii) Hence show that the gradient of the curve at $P(a \sec \theta, b \tan \theta)$ is $\frac{dy}{dx} = -\frac{b^3}{a^3} \sin \alpha$

Marks

2

2

- (a) (i) Let $I_n = \int_0^{\infty} \cos^n t dt$, where $0 \le x \le \frac{\pi}{2}$. Show that $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$ with $n \ge 2$.
 - ii) Hence, otherwise, find the exact value I_4 .

Two equal circles touch externally at B. XB is a diameter of one circle. XZ is the tangent from X to the other circle and cuts the first circle at Y. Prove that 2XZ = 3XY

- (c) (i) Prove that $\frac{a+b}{2} \ge \sqrt{ab}$ given that $a \ge 0$ and $b \ge 0$.
 - (ii) Prove that $e^a + e^b \ge 2e^{\frac{a+b}{2}}$ for all real a and b.
 - Find the minimum value of $e^{-2x} + e^{-x} + e^{x} + e^{2x}$ for all real x
- (d) The parabola $y = x^3$ is rotated about the y axis $\{x: 0 \le x \le 2\}$ to form a solid. Calculate the volume of this solid using the method of slicing.

Question 6 (15 marks)

Marks

(a) (i) Differentiate $\sin^{-1} x - \sqrt{1 - x^2}$

2

2

2

- (ii) Hence show that $\int_0^a \sqrt{\frac{1+x}{1-x}} dx = \sin^{-1} a + 1 \sqrt{1-a^2}$ for 0 < a < 1
- (b) Solve the equation $x^4 + x^2 + 6x + 4 = 0$ over the complex field given that it has a rational zero of multiplicity 2.
- (c) The points $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ lie on the same branch of the hyperbola $xy = c^2 \ (p \neq q)$. The tangents at P and Q meet at the point T.
 - (i) Show that the equation of the tangent to the hyperbola at P is $x + p^2y 2cp = 0$.
 - (ii) Show that the equation of the normal to the hyperbola at *P* is $p^{3}x py + c cp^{4} = 0$
 - (iii) What are the coordinates of T?
 - (iv) If P and Q move so that pq = k (where k is a constant), show that the locus of T is a straight line and give its equation in terms of k.

Question 7 (15 marks)

Marks

1

- (a) A rock is projected vertically upwards from ground level. Assume air resistance is kv, where v is the velocity of the rock and k is a positive constant. The rock falls back to ground level under the influence of g, the acceleration due to gravity. Consider the rock's motion starting from maximum height. Let y be the displacement and t be the time elapsed after the rock has reached maximum height. Assume the rock has a unit mass.
 - (i) Explain why $\frac{dv}{dt} = kv g$ while the rock is in motion.
 - ii) Show that $v = \frac{g}{k}(e^{kt} + 1)$ when $t \ge 0$.
 - (iii) Show that $ky = v + \frac{g}{k} \log_e(kgv g^2)$ by using $\frac{dv}{dt} = v \frac{dv}{dy}$.
- (b) Suppose $2z = \cos \theta + i \sin \theta$ where θ is real.
 - (i) Find the value of |z|.

1

3

- (ii) Find the imaginary part of the following geometric series.
 - $1+z+z^2+z^3+...=\frac{1}{1-z}$

(c)

The points P, M and N lie on a circle. The chord MN is a fixed chord of a circle and P is any point on the major arc. The chord AM is a bisector of $\angle PMN$ and chord BN is a bisector of $\angle PNM$. Prove that AB is a constant length.

Question 8 (15 marks)

Marks

1

(a) (i) Use the binomial theorem

$$(1+x)^n = {^nC_0} + {^nC_1}x^1 + {^nC_2}x^2 + \dots + {^nC_n}x^n = \sum_{k=0}^n {^nC_k}x^k$$

to show that
$$(1+\frac{1}{n})^n = \sum_{k=0}^n \frac{n(n-1)(n-2)...(n-k+1)}{n^k} \times \frac{1}{k!}$$

(ii) Hence show that
$$\lim_{n\to\infty} (1+\frac{1}{n})^n = 2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots$$

(iii) Prove by induction that
$$\frac{1}{n!} < \frac{1}{2^{n-1}}$$
 when $n \ge 3$ and n is an integer.

(iv) Hence show that
$$\lim_{n\to\infty} (1+\frac{1}{n})^n < 3$$

(b) (i) Prove that
$$(a+b+c)^2 \ge 3(ab+ac+bc)$$

Where a, b and c are positive integers.

(ii) Hence or otherwise prove that
$$a^2b^2 + a^2b^2 + b^2c^2 \ge abc(a+b+c)$$

(c) The labor party conducted a survey for the 2010 election. The ratio of the votes in three seats X, Y and Z was 4:3:2 respectively. The percentage of votes for Ms Gillard in these seats was 60%, 30% and 90% respectively. Ten voters were chosen at random, find the probability that Ms Gillard gained at least eight votes.

ACE Examination 2011

HSC Mathematics Extension 2 Yearly Examination

Worked solutions and marking guidelines

	Solution	Criteria
1(a) (i)	$\int \frac{2}{x^2 + 4x + 13} dx = 2 \int \frac{dx}{(x+2)^2 + 3^2}$	2 Marks: Correct answer.
	$= \frac{2}{3} \tan^{-1} \frac{(x+2)}{3} + c$	1 Mark: Correctly completes the square
1(b)	$\int 3xe^x dx = 3 \int x \frac{d}{dx} (e^x) dx$	2 Marks: Correct answer.
	$=3(xe^{x} - \int e^{x} dx)$ $=3xe^{x} - 3e^{x} + c$	1 Mark: Set up of the integration by parts.
1(c) (i)	$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$	3 Marks: Correct answer.
	$7x+4 = (ax+b)(x+2)+c(x^{2}+1)$ Let $x = -2$ and $x = 0$ $-10 = 5c 4 = b(0+2) - 2(0^{2}+1)$ $c = -2 b = 3$	2 Marks: Calculates two of the variables 1 Mark: Makes
	Equating the coefficients of x^2 $0 = a - 2$ a = 2 $\therefore a = 2, b = 3 \text{ and } c = -2$	some progress in finding <i>a, b</i> or <i>c</i> .
1(c) (ii)	$\int \frac{7x+4}{\left(x^2+1\right)(x+2)} dx = \int \left(\frac{2x+3}{\left(x^2+1\right)} - \frac{2}{(x+2)}\right) dx$	2 Marks: Correct answer.
	$= \int \left(\frac{2x}{(x^2+1)} + \frac{3}{(x^2+1)} - \frac{2}{(x+2)}\right) dx$ $= \ln(x^2+1) + 3\tan^{-1}x - 2\ln x+2 + c$	1 Mark: Correctly finds one of the integrals.
1(d)	$\int_0^1 x e^{-x^2} dx = -\frac{1}{2} \int_0^1 -2x e^{-x^2} dx$ $= -\frac{1}{2} \left[e^{-x^2} \right]_0^1$	2 Marks: Correct answer.
	$= -\frac{1}{2}(e^{-1} - e^{0})$ $= \frac{1}{2}(1 - \frac{1}{e})$	1 Mark: Integrates correctly
	$=\frac{e-1}{2e}$	

r		1
1(e)	$\begin{aligned} t &= \tan \frac{\theta}{2} \\ dt &= \frac{1}{2} \sec^2 \frac{\theta}{2} d\theta \end{aligned}$	4 Marks: Correct answer.
	$dt = \frac{1}{2}(1+t^2)d\theta$ $d\theta = \frac{2}{1+t^2}dt$ When $\theta = 0$ then $t = 0$ and when $\theta = \frac{\pi}{2}$ then $t = 1$	3 Marks: Correctly determines the primitive function
	$\cos \theta + 2\sin \theta + 3 = \frac{1 - t^2 + 2(2t) + 3(1 + t^2)}{1 + t^2}$ $= \frac{2(t^2 + 2t + 2)}{1 + t^2}$ $= \frac{2[1 + (t + 1)^2]}{1 + t^2}$	2 Marks: Correctly expresses the integral in terms of <i>t</i>
	$\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos\theta + 2\sin\theta + 3} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1 + t^{2}}{2[1 + (t+1)^{2}]} \times \frac{2}{1 + t^{2}} dt$ $= \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + (t+1)^{2}} dt$ $= \left[\tan^{-1}(t+1) \right]_{0}^{1}$ $= \tan^{-1} 2 - \frac{\pi}{4}$ $= 0.322$	1 Mark: Correctly finds $d\theta$ in terms of dt and determines the new limits.
2(a) (i)	$zw = (1+2i)(-2+i)$ $= -2+i-4i+2i^{2}$ $= -4-3i$	1 Mark: Correct answer.
2(a) (ii)	$\frac{5}{iw} = \frac{5}{-2i+i^2}$ $= \frac{5}{-1-2i} \times \frac{-1+2i}{-1+2i}$ $= \frac{-5+10i}{1+4}$ $= -1+2i$	1 Mark: Correct answer.

	T	
	$ z-1 \le 3$ represents a region with a centre is $(1, 0)$ and radius less than or equal to 3.	
	Im $(z) \ge 3$ represents a region above the horizontal line $y = 3$.	
	The point (1,3) is where the two inequalities hold.	
2(d)	$z = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$	2 Marks: Correct answer.
	$z^{6} = \cos(6 \times \frac{\pi}{6}) + i\sin(6 \times \frac{\pi}{6})$ $= \cos \pi + i\sin \pi$ $= -1$	1 Mark: Uses De Moivre's theorem
2(e)	=-1 All the coefficients of $P(z)$ are real.	1 Mark: Correct
(i)	Then any complex roots occur in conjugate pairs. Since $3+i$ is a root then $3-i$ is a root	answer.
2(e) (ii)	Roots are $3+i$, $3-i$ and α	2 Marks: Correct
	$(3+i)(3-i)\alpha = -\frac{10}{1}$	answer.
	$(9-i^2)\alpha = -10$ $10\alpha = -10$	1 Mania Malaa
	$\alpha = -1$	1 Mark: Makes some progress
	P(z) = (z - 1)[z - (3 + i)][z - (3 - i)]	towards the solution.
	$= (z+1)(z^2 - 6z + 10)$	
2(f)	Let $z = x + iy$ and $\overline{z} = x - iy$	3 Marks: Correct answer.
	$z^2 = i\overline{z}$	uns wor.
	$(x+iy)^2 = i(x-iy)$ $x^2 - y^2 + 2xyi = y + ix$	
	x - y + 2xyt - y + tx	
	Equating the real and imaginary parts	
	Equating the real and imaginary parts $x^2 - y^2 = y \tag{1}$	2 Marks:
		2 Marks: Determines one possible solution to
	$x^2 - y^2 = y \tag{1}$	Determines one
	$x^{2} - y^{2} = y $ (1) 2xy = x (2) Rearranging eqn (2)	Determines one possible solution to
	$x^{2} - y^{2} = y $ (1) 2xy = x (2) Rearranging eqn (2) x(2y-1) = 0 $x = 0 \text{ and } y = \frac{1}{2}$ Substitute $x = 0$ into eqn (1)	Determines one possible solution to the equation.
	$x^{2}-y^{2} = y $ (1) 2xy = x (2) Rearranging eqn (2) x(2y-1) = 0 $x = 0 \text{ and } y = \frac{1}{2}$	Determines one possible solution to

	0.1.44	
	Substitute $y = \frac{1}{2}$ into eqn (1)	
	$x^2 - \frac{1}{4} = \frac{1}{2}$	
	$x^2 = \frac{3}{4}$	
	$x^{2} = \frac{3}{4}$ $x = \pm \frac{\sqrt{3}}{2}$	
	Solution is $(0,0)$, $(0,-1)$, $(\frac{\sqrt{3}}{2},\frac{1}{2})$ and $(-\frac{\sqrt{3}}{2},\frac{1}{2})$	
3(a)		
(i)	y 3 [↑]	1 Mark: Correct answer.
	2	and wol.
	1.	
	1 1 2 3 x	
	2	

3(a) (ii)	y 8+	2 Marks: Correct
	6-	answer.
	4-	
	2-	
	<	
	2+ 4+ 1	
	-6-	1 Mark: Calculates
	.* \	both vertical asymptotes.

	To find the equation of tangent through P	2 Marks: Correct
	$x = a\cos\theta \qquad \qquad y = b\sin\theta$	answer
	$\frac{dx}{d\theta} = -a\sin\theta \qquad \frac{dy}{d\theta} = b\cos\theta$	
	$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$	
	$=b\cos\theta\times\frac{1}{-a\sin\theta}$	
	$= \frac{-b\cos\theta}{a\sin\theta}$	
	$a\sin\theta$	
	Equation of the tangent	
	$y - y_1 = m(x - x_1)$	
	$y - b\sin\theta = \frac{-b\cos\theta}{a\sin\theta}(x - a\cos\theta)$	1 Mark: Correctly calculates the
	$ay\sin\theta - ab\sin^2\theta = -bx\cos\theta + ab\cos^2\theta$	gradient
	$bx\cos\theta + ay\sin\theta = ab(\sin^2\theta + \cos^2\theta)$	
	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$	
4(a) (ii)	At $T = a$ then $\frac{a}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$	3 Marks: Correct answer
	$\frac{y}{b}\sin\theta = 1 - \cos\theta$	
	$y = \frac{b(1 - \cos \theta)}{\sin \theta}$	
	At R $x = -a$ then similarly $y = \frac{b(1 + \cos \theta)}{\sin \theta}$	2 Marks: Made progress in proving
	Gradients of lines at the focus <i>S</i> (<i>ae</i> ,0)	the lines are
	Gradient RS × Gradient TS	perpendicular to the
	$= \frac{\frac{b(1+\cos\theta)}{\sin\theta} - 0}{\frac{-a-ae}{}} \times \frac{\frac{b(1-\cos\theta)}{\sin\theta} - 0}{a-ae}$	focus.
	-a - ae $a - ae$	
	$= \frac{b(1+\cos\theta)}{-a(1+e)\sin\theta} \times \frac{b(1-\cos\theta)}{a(1-e)\sin\theta}$	
	$= \frac{b^2(1-\cos^2\theta)}{-a^2(1-e^2)\sin^2\theta}$	
	$-\frac{1}{-a^2(1-e^2)\sin^2\theta}$	1 Mayle Datamata 1
	=-1	1 Mark: Determined the coordinates at <i>T</i>
	Gradients of lines at the focus S'(-ae,0)	and R .
L		L

	Gradient RS' × Gradient TS'	
	$= \frac{b(1+\cos\theta)}{\sin\theta} - 0 \times \frac{b(1-\cos\theta)}{\sin\theta} - 0$	
	$=$ $\frac{\sin \theta}{-a + ae} \times \frac{\sin \theta}{a + ae}$	
	$= \frac{b(1+\cos\theta)}{-a(1-e)\sin\theta} \times \frac{b(1-\cos\theta)}{a(1+e)\sin\theta}$	
	$=\frac{b^2(1-\cos^2\theta)}{-a^2(1-e^2)\sin^2\theta}$	
	=-1	
4(b) (i)	The vertical component of T is $T \cos \theta$	1 Mark: Correct answer.
4(b)	Body moving in a horizontal circle.	0.16.1
(ii)	$T\cos\theta - mg = 0 \qquad (1)$	3 Marks: Correct answer.
	$T\sin\theta = mr\omega^2 \tag{2}$	answer.
	Eqn (2) divided by Eqn (1)	
	• • • • • • • • • • • • • • • • • • • •	
	$\frac{T\sin\theta}{T\cos\theta} = \frac{mr\omega^2}{mg}$	
		2 Marks: Solves the
	$\tan \theta = \frac{r\omega^2}{g}$	two equations of
	g ·	motion.
	However $\tan \theta = \frac{r}{h}$	
	Therefore	
	$r\omega^2$ r	
	$\frac{r\omega^2}{g} = \frac{r}{h}$	1 Mark: Correctly
	2 g	states the two
	$\omega^2 = \frac{g}{h}$	equations of motion
4(b)	2π 2π $2\pi\sqrt{h}$	1 Mark: Correct
(iii)	Period = $\frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{g}{g}}} = \frac{2\pi\sqrt{h}}{\sqrt{g}}$	answer.
	$\sqrt{\frac{s}{h}}$	
4(c)	Gradient of PO Gradient of QO	3 Marks: Correct
(i)	$m = \frac{y_2 - y_1}{m}$ $m = \frac{y_2 - y_1}{m}$	answer.
	$m = \frac{x_2 - x_1}{x_2 - x_1}$ $m = \frac{x_2 - x_1}{x_2 - x_1}$	
	$= \frac{b \tan \theta - 0}{a \sec \theta - 0} \qquad \qquad = \frac{b \tan \alpha - 0}{a \sec \alpha - 0}$	
		2 Marks: Makes
	$=\frac{b\frac{\sin\theta}{\cos\theta}}{a\frac{1}{\cos\theta}} = \frac{b\frac{\sin\alpha}{\cos\alpha}}{a\frac{1}{\cos\alpha}}$	significant progress.
	$= \frac{b \sin \theta}{} = \frac{b \sin \alpha}{}$	
	$={a}$	1 Mark: Correctly
	PO and QO are at right angles $m_1 m_2 = -1$	calculates the
		gradient of PO or
L		QO

	$b\sin\theta$ $b\sin\alpha$	
	$\frac{b\sin\theta}{a} \times \frac{b\sin\alpha}{a} = -1$	
	$\sin\theta\sin\alpha = -\frac{a^2}{b^2}$	
	b^2	
4(c)	To find the gradient of curve through P	2 Marilian Clausest
(ii)	$x = a \sec \theta \qquad \qquad y = b \tan \theta$	2 Marks: Correct answer.
	$=\frac{a}{\cos\theta}$ $\frac{dy}{d\theta} = b \sec^2\theta$	
	$\frac{dx}{d\theta} = \frac{\cos\theta.0 - a - \sin\theta}{\cos^2\theta}$	
	$=\frac{a\sin\theta}{\cos^2\theta}$	
	$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$	
	$=b\sec^2\theta\times\frac{\cos^2\theta}{a\sin\theta}$	1 Mark: Calculates
		the gradient as
	$=\frac{b}{a\sin\theta}$	$\frac{b}{a}$
	Now from c(i)	$a\sin\theta$
	$\frac{dy}{dx} = \frac{b}{a \times -\frac{a^2}{b^2 \sin \alpha}}$	
	$b^2 \sin \alpha$	
	$=-\frac{b^3}{a^3\sin\alpha}$	
		215.1.6
5(a) (i)	$I_n = \int_0^x \cos^n x dx$	2 Marks: Correct answer.
	$= \int_{2}^{\pi} \cos^{n} x dx$	taibwor.
	Integration by parts	
	$I_n = \int_0^{\pi} \cos^{n-1} t \cos t dt$	
	_	
	$= \left[\cos^{n-1}t\sin t\right]_0^{\frac{\pi}{2}} + (n-1)\int_0^{\frac{\pi}{2}}\cos^{n-2}t\sin^2tdt$:
	$=(n-1)\int_0^{\pi}\cos^{n-2}t\sin^2tdt$	1 Mark: Correctly
	$= (n-1) \int_0^{\pi} \cos^{n-2} t (1 - \cos^2 t) dt$	using integration by parts.
Die A	$= (n-1) \int_0^{\frac{\pi}{2}} (\cos^{n-2} t - \cos^n t) dt$	
	$= (n-1) \int_0^{\frac{\pi}{2}} \cos^{n-2}t dt - (n-1) \int_0^{\frac{\pi}{2}} \cos^n t dt$	
	Using the original integral	

	$\int_{0}^{\frac{\pi}{2}} \cos^{n}t dt = (n-1) \int_{0}^{\frac{\pi}{2}} \cos^{n-2}t dt - n \int_{0}^{\frac{\pi}{2}} \cos^{n}t dt + \int_{0}^{\frac{\pi}{2}} \cos^{n}t dt$	
	$n\int_{0}^{\pi} \cos^{n}t dt = (n-1)\int_{0}^{\pi} \cos^{n-2}t dt$	
	$\int_0^{\frac{\pi}{2}} \cos^n t dt = \frac{(n-1)}{n} \int_0^{\frac{\pi}{2}} \cos^{n-2} t dt$	
	$I_n = \frac{(n-1)}{n} I_{n-2}$	
5(a) (ii)	$I_n = \frac{(n-1)}{n} I_{n-2}$	2 Marks: Correct answer.
	$I_4 = \frac{(4-1)}{4} I_{4-2}$	answer.
	$=\frac{3}{4}\int_0^{\pi/2}\cos^2tdt$	
	$= \frac{3}{4} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos 2t) dt$	
	$=\frac{3}{8}\left[(x+\frac{\sin 2t}{2})\right]^{\frac{\pi}{2}}$	1 Mark: Using the result from (a)(i) to
	$= \frac{3}{8} \left[\left(\frac{\pi}{2} + \frac{\sin 0}{2} \right) - \left(0 + \frac{\sin 0}{2} \right) \right]$	obtain the definite integral.
	$=\frac{3\pi}{16}$	
5(b)		3 Marks: Correct
	Y	answer.
		2 Marks: Makes significant progress towards the proof.
	$X \longrightarrow A \longrightarrow B \longrightarrow C$	1
	Construction: Join BY, produce XB to C, join CZ.	1 Mark: States a relevant circle
	Proof: $\angle XYB = 90^{\circ}$ (angle in a semicircle is a right angle)	theorem property or equivalent
	$\angle XZC = 90^{\circ}$ (angle in a semicircle is a right angle)	statement.
	$BY \square CZ$ (corresponding angles are equal)	
	∆XYB ∆XZC (equiangular)	
	$\frac{XY}{XZ} = \frac{XB}{XC} \text{ (corresponding sides of similar triangles)}$	

	However $\frac{XB}{XC} = \frac{2}{3} (BC = \frac{1}{2}XB)$	
	$\left \frac{XY}{XZ} = \frac{2}{3} \right $	
	$\therefore 2XZ = 3XY$	
5(c) (i)	If a and b are greater than 0	1 Mayler Carres
(1)	$\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$	1 Mark: Correct answer.
	$a - 2\sqrt{a}\sqrt{b} + b \ge 0$	
	$a+b \ge 2\sqrt{ab}$	
	$\frac{a+b}{2} \ge \sqrt{ab}$	
5(c)	If a and b are real then $e^a > 0$ and $e^b > 0$	2 Marks: Correct
(ii)	Hence from part (i)	answer.
	$e^a + e^b \ge 2\sqrt{e^a e^b}$	1 Mark: Correctly
	$e^a + e^b \ge 2e^{\frac{a}{2}}e^{\frac{b}{2}}$	uses part (i)
	$e^a + e^b \ge 2e^{\frac{a+b}{2}}$	expression.
5(c)	Using part (ii)	2 Marks: Correct
(iii)	$e^{-2x} + e^{-x} + e^{x} + e^{2x} = (e^{x} + e^{-x}) + (e^{2x} + e^{-2x})$	answer.
	$\geq 2e^{\frac{x+-x}{2}} + 2e^{\frac{2x+-2x}{2}}$	
	≥ 2e ² + 2e ² ≥ 2+2	1 Mark Correctly
	>4	uses part (ii) expression.
5(d)	Area of the slice is a circle radius is x and height y	
	$A = \pi x^2$	3 Marks: Correct answer.
	$=\pi(y^{\frac{1}{3}})^2$	answer.
	$=\pi y^{\frac{2}{3}}$	
	$=\pi y^3$ $\delta V = \delta A \delta y$	2 Marks: Correct
		integral for the
	$V = \lim_{\delta y \to 0} \sum_{\nu=0}^{8} \pi y^{\frac{2}{3}} \delta y$	volume of the solid.
	$=\int_0^8 \pi y^{\frac{2}{3}} dy$	
:		
	$=\pi \left[\frac{3}{5}y^{\frac{5}{3}}\right]_0^8$	
	10	1Mark: Correct
	$=\frac{3\pi}{5}\times8^{\frac{5}{3}}$	expression for the volume of the solid.
	$=\frac{96\pi}{5}$ cubic units	rotaine of the boilt.
	5	

6(a) (i)	$y = \sin^{-1} x - \sqrt{1 - x^2}$	2 Marks: Correct
(1)	$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{2} (1-x^2)^{-\frac{1}{2}} \times -2x$	answer.
	$\frac{1}{dx} - \frac{1}{\sqrt{1-x^2}} - \frac{1}{2} (1-x^2) - \frac{1}{2} x$	
	$=\frac{1}{\sqrt{1-x^2}} + \frac{x}{\sqrt{1-x^2}}$	
	VI N VI N	1 Mark Correctly
	$=\frac{1+x}{\sqrt{1-x^2}}$	differentiates the function.
	\	iunction.
	$=\frac{1+x}{\sqrt{(1+x)(1-x)}}$	
	$=\frac{\sqrt{1+x}}{\sqrt{1-x}}$	
	$-\frac{1}{\sqrt{1-x}}$	
	Result defined for $-1 \le x \le 1$	
6(a) (ii)	$\int_0^a \sqrt{\frac{1+x}{1-x}} dx = \left[\sin^{-1} x - \sqrt{1-x^2} \right]_0^a$	1 Mark: Correct answer
	$= (\sin^{-1} a - \sqrt{1 - a^2}) - (\sin^{-1} 0 - \sqrt{1})$	
	$= \sin^{-1} a - \sqrt{1 - a^2} + 1$	
	$=\sin^{-1}a+1-\sqrt{1-a^2}$:
6(b)	$P(x) = x^4 + x^2 + 6x + 4$	4 Marks: Correct
	$P'(x) = 4x^3 + 2x + 6$	answer.
	$=2(2x^3+x+3)$	
	To determine the roots of $2x^3 + x + 3$	
	$P'(-1) = 2(2(-1)^3 + (-1) + 3)$	3 Marks: Factorises
		the polynomial
	Therefore -1 is a zero of multiplicity 2 of $P(x)$	
	$P(x) = x^{4} + x^{2} + 6x + 4$ $= (x+1)^{2}(x^{2} + bx + c)$	
	$= (x+1)^{n}(x^{n}+bx+c)$ $= (x^{2}+2x+1)(x^{2}+bx+c)$	2 Marks:
	$= (x + 2x + 1)(x + bx + c)$ $= x^4 + bx^3 + cx^2 + 2x^3 + 2bx^2 + 2cx + x^2 + bx + c$	Recognises $(x+1)^2$
	$= x^{4} + (b+2)x^{3} + (c+2b+1)x^{2} + (b+2c)x + 4$	as a factor of the polynomial.
	Hence $c = 4$, $b = -2$	porynomia.
	Therefore $P(x) = x^4 + x^2 + 6x + 4$	***************************************
	$= (x+1)^2(x^2 - 2x + 4)$	
	$= (x+1)^2((x-1)^2 - 1 + 4)$	1 Mark: Calculates the derivative and
	$= (x+1)^2((x-1)^2+3)$	finds its zeros.
	$= (x+1)^2(x-1+\sqrt{3}i)(x-1-\sqrt{3}i)$	
	Zeros of $P(x)$ are -1, $1+\sqrt{3}i$ and $1-\sqrt{3}i$	

6(c)	TD C 14 12 4 C4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.16 1 0 1
(i)	To find the gradient of the tangent.	2 Marks: Correct answer.
.,	$xy = c^2$	1
	$x\frac{dy}{dx} + y = 0$	
	w	
	$\frac{dy}{dx} = -\frac{y}{x}$	
	At $P(cp, \frac{c}{p})$	
	c	1 Mark: Correctly calculates the
	$\frac{dy}{dx} = -\frac{\frac{c}{p}}{cp}$	gradient of the
	$\frac{1}{dx} = \frac{1}{cp}$	tangent to the
	$=-\frac{1}{p^2}$	hyperbola
	Equation of the tangent at P	
	$y - \frac{c}{p} = -\frac{1}{p^2}(x - cp)$	
	$p^2y - cp = -x + cp$	
	$x + p^2y - 2cp = 0$	
6(c) (ii)	At P $(cp, \frac{c}{p})$ Gradient of the tangent is $-\frac{1}{p^2}$	2 Marks: Correct answer.
	Gradient of the normal is p^2 $(m_1m_2 = -1)$	
	Equation of the normal at P	1 Mark: Correctly
	C2(112)	calculates the
	$y - \frac{c}{p} = p^2(x - cp)$	gradient of the
	$py-c=p^3x-cp^4$	normal to the hyperbola
	$p^3x - py + c - cp^4 = 0$	nyperoon
6(c)	Equation of tangent at Q is $x+q^2y-2cq=0$	2 Marks: Correct
(iii)	Point T is the point of intersection of these tangents.	answer.
	Solve equations simultaneously	
	$x + p^2 y - 2cp = 0 \tag{1}$	
	$x + q^2y - 2cq = 0 (2)$	
	Eqn (1) – Eqn (2)	
	$p^2y - q^2y = 2cp - 2cq$	
	y(p+q)(p-q) = 2c(p-q)	
	y(p+q) = 2c	1 Mark: Correctly
		finds one of the coordinates or finds
	$y = \frac{2c}{(p+q)}$	correct x from
	To find x substitute the value for y into eqn (1)	incorrect y

	7	
	$x + p^2 \frac{2c}{p+q} - 2cp = 0$	
	$x = 2cp(1 - \frac{p}{p+q})$	
	$x = 2cp(\frac{p+q-p}{p+q})$	
	$x = \frac{2cpq}{p+q}$	
	Therefore the coordinates for T are $(\frac{2cpq}{p+q}, \frac{2c}{p+q})$	
6(c) (iv)	Given that $pq = k$ and the coordinates of T . $x = \frac{2cpq}{p+q}$	2 Marks: Correct answer.
	$= pq \times \frac{2c}{p+q}$	
	$= pq \times y$ $= ky$ $y = \frac{x}{t}$	1 Mark: Using the coordinates of <i>T</i> and substituting <i>k</i> for <i>pq</i>
	$y = \frac{1}{k}$	
7(a) (i)	Newton's second law:	1 Mark: Correct answer.
		answer.
	$\frac{dv}{dt} = kv - g$	
7(a) (ii)	$\frac{dt}{dv} = \frac{1}{kv - g}$	3 Marks: Correct answer.
	$\int \frac{dt}{dv} dv = \int \frac{1}{kv - g} dv$	
	$t = \frac{1}{k} \log_e(kv - g) + c$	
	Initial conditions $t = 0$ and $v = 0$	2 Marks: Correctly substitutes the
	$0 = \frac{1}{k} \log_e(-g) + c$	initial conditions into the expression
	$c = -\frac{1}{k} \log_e g$	for t
	$t = \frac{1}{k} \log_e(kv - g) - \frac{1}{k} \log_e g$	
	$=\frac{1}{k}\log_{e}(\frac{kv-g}{g})$	1 Mark: Finds the correction
	$kt = \log_e(\frac{kv - g}{g})$	expression for t .

	In a	
	$e^{kt} = \frac{kv - g}{g}$	
	g In	
	$=\frac{kv}{g}-1$	
	0	
	$v = \frac{g}{v} (e^{kt} + 1)$	
7(a) (iii)	$\frac{dv}{dt} = v \frac{dv}{dy}$	3 Marks: Correct answer.
	$kv - g = v \frac{dv}{dy}$	
	$\frac{dv}{dy} = \frac{kv - g}{v}$	
	$\frac{dy}{dv} = \frac{v}{kv - g}$	2 Marks: Finds the correction
	$=\frac{1}{k}\times\frac{kv}{kv-g}$	expression for ky
	$=\frac{1}{k}\times\frac{kv-g+g}{kv-g}$	
	$=\frac{1}{k}\times(1+\frac{g}{kv-g})$	
	$ky = (v + \frac{g}{k} \log_e(kv - g)) + c$	1 Mark: Uses results for part (i) to determine an
	Initially $y = 0$, $v = 0$	
	$0 = 0 + \frac{g}{k} \log_e(-g) + c$	expression for $\frac{dv}{dy}$
	$c = \frac{g}{k} \log_e g$	
	$ky = v + \frac{g}{k} \log_e(kv - g) + \frac{g}{k} \log_e g$	
	$ky = v + \frac{g}{k} (\log_e(kv - g) + \log_e g)$	
	$= v + \frac{g}{k} \log_e(kgv - g^2)$	
L		1

7(b) (i)	$2z = \cos\theta + i\sin\theta$	1 Mark: Correct
	$z = \frac{1}{2}(\cos\theta + i\sin\theta)$	answer
	$ z = \frac{1}{2} \cos \theta + i \sin \theta $	
	$=\frac{1}{2}\times 1$	
	$=\frac{1}{2}$	
7(b) (ii)	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}(\cos\theta + i\sin\theta)}$	3 Marks: Correct answer.
	$=\frac{2}{2-\cos\theta-i\sin\theta}$	
	$= \frac{2}{2 - \cos\theta - i\sin\theta} \times \frac{2 - \cos\theta + i\sin\theta}{2 - \cos\theta + i\sin\theta}$ $= \frac{4 - 2\cos\theta + i2\sin\theta}{(2 - \cos\theta)^2 - (i\sin\theta)^2}$	2 Marks: Makes significant progress towards the solution.
	$=\frac{4-2\cos\theta+i2\sin\theta}{4-4\cos\theta+\cos^2\theta+\sin^2\theta}$	
	$=\frac{2(2-\cos\theta)+i2\sin\theta}{5-4\cos\theta}$	1 Mark: Multiplies
	Imaginary part is $\frac{2\sin\theta}{5-4\cos\theta}$	by the conjugate.
7(c)	Given: $\angle AMN = \angle AMP$ and $\angle PNB = \angle BNM$. Aim: To prove AB is a constant length. Proof: Let $\angle AMN = \angle AMP = x$, $\angle BNM = \angle BNP = y$	4 Marks: Correct answer.
	∠NPM is a constant angle (angles in the same segment standing on the same arc (MN) are equal). Now ∠NPM + x + x + y + y = 180 (angle sum of a triangle is 180). ∠NPM = 180 - 2(x + y)	3 Marks: Shows that ∠NPM is a constant angle.
	Therefore $(x+y)$ must be constant.	2 Marks: Correctly applying the angle
	$\angle PMB = \angle PNB = y$ (angles in the same segment standing on the same arc (PB) are equal).	in the same segment thm
	$\angle AMB = \angle AMP + \angle PMB$ $= x + y$ Therefore $\angle AMB$ is a constant angle. Therefore AB must be a constant length.	1 Mark: Drawing a diagram and inserting information about the bisectors.
	·	

8(a) (i)	$(1+\frac{1}{n})^n = \sum_{k=0}^n {^nC_k} (\frac{1}{n})^k$ $= \sum_{k=0}^n \frac{n!}{(n-k)!k!} (\frac{1}{n})^k$ $= \sum_{k=0}^n \frac{n(n-1)(n-2)(n-k+1)}{n^k} \frac{1}{k!}$	1 Mark: Correct answer.
8(a) (ii)	$(1+\frac{1}{n})^n = \sum_{k=0}^n \frac{n(n-1)(n-2)(n-k+1)}{n^k} \frac{1}{k!}$	2 Marks: Correct answer.
	$= \sum_{k=0}^{n} \frac{n}{n} \times \frac{(n-1)}{n} \times \frac{(n-2)}{n} \times \dots \times \frac{(n-k+1)}{n} \frac{1}{k!}$	1 Mark: Splitting the expression into fractions.
	As $n \to \infty$ then $\frac{n-1}{n} \to 1$, $\frac{n-2}{n} \to 1$, $\frac{n-3}{n} \to 1 \dots$ $(1+\frac{1}{n})^n = \sum_{i=1}^n \frac{1}{k!}$	
	$=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots$	
	$=2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots$	
8(a) (iii)	Test the result for $n = 3$ $\frac{1}{3!} < \frac{1}{2^{3-1}}$	3 Marks: Correct answer.
	$\frac{1}{6} < \frac{1}{4}$ Therefore the result is true for $n = 3$	2 Marks: Proves the result true for $n = k + 1$
	Assume the result is true for $n = k \frac{1}{k!} < \frac{1}{2^{k-1}}$	1 Mark: Tests the
	To prove the result is true for $n = k + 1$	result for $n = 3$
	$\frac{1}{(k+1)!} < \frac{1}{2^{(k+1)-1}}$	
	$<\frac{1}{2^k}$	
		L

	$LHS = \frac{1}{(k+1)!}$ 1	
	$= \frac{1}{(k+1)k!}$ $< \frac{1}{(k+1)2^{k-1}}$ Assumption for $n = k$	
i	$< \frac{1}{2 \times 2^{k-1}} \qquad k+1 > 2 \text{ as } n \ge 3$ $= \frac{1}{2^k}$	
	= RHS Therefore the result holds true for $n = k+1$	
	Thus if the result is true for $n = k$, it is true for $n = k + 1$. It has been shown that the result is $n = 1$, hence it is correct for $n = 2$, then $n = 3$ and so on.	
8(a) (iv)	From part (ii) $\lim_{n \to \infty} (1 + \frac{1}{n})^n = 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ $= 2 + \frac{1}{2} + \sum_{k=3}^{\infty} \frac{1}{k!}$ $< 2 + \frac{1}{2} + \sum_{k=3}^{\infty} \frac{1}{2^{k-1}}$ $< 2 + \frac{1}{2} + (\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots)$	1 Mark: Correct answer.
	$ \begin{array}{cccc} 2 & 2^{2} & 2^{3} & 2^{4} \\ <2 + \frac{1}{2} + (\frac{1}{2^{\frac{1}{2}}}) & & \text{Limiting sum of GP} \\ <2 + \frac{1}{2} + \frac{1}{2} & & & \\ <3 & & & \\ \end{array} $	
8(b) (i)	Now $(a-b)^2 \ge 0$ $a^2 + b^2 \ge 2ab$ (1)	2 Marks: Correct answer.
	Also $(a-c)^2 \ge 0$ $a^2 + c^2 \ge 2ac$ (2) Also $(b-c)^2 \ge 0$ $b^2 + c^2 \ge 2bc$ (3) Eqn(1)+(2)+(3)	1 Mark: Makes some progress towards the solution such as using $a^2 + b^2 \ge 2ab$

	$2(a^2 + b^2 + c^2) \ge 2(ab + ac + bc)$	
	$a^2 + b^2 + c^2 \ge (ab + ac + bc)$	
	$a^2 + b^2 + c^2 + 2(ab + ac + bc) \ge (ab + ac + bc) + 2(ab + ac + bc)$	in
	$a^{2} + b^{2} + c^{2} + 2(ab + ac + bc) \ge 3(ab + ac + bc)$	
	$(a+b+c)^2 \ge 3(ab+ac+bc)$	}
8(b)	Using c (i)	2 Marks: Correct
(ii)	$a^2 + b^2 + c^2 \ge (ab + ac + bc)$	answer.
	Let $a = xy$, $b = xz$ and $c = yz$	
	$x^2y^2 + x^2z^2 + y^2z^2 \ge (xyxz + xyyz + xzyz)$	
	$\geq xyz(x+y+z)$	1 Mark: Makes some progress
	Replace $x = a, y = b$ and $z = c$	towards the
	$a^2b^2 + a^2c^2 + b^2c^2 \ge abc(a+b+c)$	solution.
8(c)	Consider one voter.	4 Marks: Correct
	0.6 G	answer.
	$\frac{4}{9}$ X $\frac{1}{0.4}$ NG	
	$\frac{3}{9}$ 0.3 G	
	2 0.7 NG	3 Marks: Mostly correct solution
	2 0.9 G	Correct Solution
	0.1 NG	
		2 Marks: Calculates probability of one
	The probability that Ms Gillard will gain this vote.	voter.
	$P = \frac{4}{9} \times 0.6 + \frac{3}{9} \times 0.3 + \frac{2}{9} \times 0.9$	
	= 0.6	1 Mark: Draws a tree diagram with
	The probability that Ms Gillard will receive at least eight votes.	probabilities for each outcome.
	P(at least 8 votes)	
	$= {}^{10}C_8(0.6)^8(0.4)^2 + {}^{10}C_9(0.6)^9(0.4)^1 + {}^{10}C_{10}(0.6)^{10}(0.4)^0$	
	= 0.1672897536	