ACE	Examination	S

Student Name:	•	

2016 YEAR 12 YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- · Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- · Allow about 1 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the acute angle between the lines x-2y+1=0 and 2x-y-1=0?
 - (A) 37°
 - (B) 45°
 - (C) 90°
 - (D) 143°
- 2 What is the number of asymptotes on the graph of $y = \frac{1}{x^2 1}$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 3 Which of the following is the correct expression for $\int \frac{dx}{\sqrt{4-x^2}}$?
 - (A) $\cos^{-1} \frac{x}{2} + C$
 - (B) $\cos^{-1} 2x + C$
 - (C) $\sin^{-1}\frac{x}{2} + C$
 - (D) $\sin^{-1} 2x + C$
- 4 A curve has parametric equations x=t-3 and $y=t^2+2$. What is the Cartesian equation of this curve?
 - (A) $y = x^2 x 1$
 - (B) $y = x^2 + x 1$
 - (C) $y = x^2 6x + 11$
 - (D) $y = x^2 + 6x + 11$

- A particle is moving in a straight line with $v^2 = 36 4x^2$ and undergoing simple harmonic motion. If the particle is initially at the origin, which of the following is the correct equation for its displacement in terms of t?
 - (A) $x = 2\sin(3t)$
 - (B) $x = 3\sin(2t)$
 - (C) $x = 2\sin(9t)$
 - (D) $x = 3\sin(4t)$
- 6 Solve the inequality $\frac{x^2-4}{x} \ge 0$.
 - (A) $-2 \le x < 0$ or $x \ge 2$
 - (B) $-2 \ge x > 0$ or $x \le 2$
 - (C) $-4 \le x < 0$ or $x \ge 4$
 - (D) $-4 \ge x > 0 \text{ or } x \le 4$
- 7 What is the value of $\int_0^1 \frac{4x}{2x+1} dx$? Use the substitution u = 2x+1.
 - (A) $2 \log_e 2$
 - (B) $2 \log_e 3$
 - (C) $4-2\log_{e} 2$
 - (D) $4-2\log_{e} 3$
- 8 What is the correct expression for the indefinite integral $\int (\cos^2 x + 2\sec^2 x) dx$?
 - (A) $\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + C$
 - (B) $\frac{1}{2}x \frac{1}{4}\sin 2x + \tan x + C$
 - (C) $\frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$
 - (D) $\frac{1}{2}x \frac{1}{4}\sin 2x + 2\tan x + C$

- 9 What is the term independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^9$
 - (A) ${}^9C_3(-2)^3$
 - (B) ${}^{9}C_{6}(-2)^{6}$
 - (C) ${}^9C_3(2)^3$
 - (D) ${}^{9}C_{6}(2)^{6}$
- 10 A particle moves in a straight line with a displacement of x and velocity of v. When t = 0 the acceleration is $3x^2$, velocity $-\sqrt{2}$ and displacement is 1. Which of the following is the correct equation for x as a function of t?
 - $(A) \quad x = \frac{-2}{(t + \sqrt{2})}$
 - (B) $x = \frac{-2}{(t \sqrt{2})^2}$
 - (C) $x = \frac{2}{(t + \sqrt{2})^2}$
 - (D) $x = \frac{2}{(t \sqrt{2})^2}$

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

- (a) Use Newton's method to find a second approximation to the positive root of $x-2\sin x=0$. Take x=1.6 as the first approximation.
- (b) ABCD is a cyclic quadrilateral. EAF is a tangent at A to the circle. CA bisects ∠BCD.

Show that $EAF \square DB$.

(c) What is the exact value of the definite integral $\int_0^{\frac{\pi}{3}} \sin^2 x dx$?

2

(d) A particle moves in a straight line and its position at any time is given by:

$$x = 1 + \sqrt{3}\cos 4t + \sin 4t$$

- (i) Prove the motion is simple harmonic.
- (ii) Find the amplitude of the motion.
 -) When does the particle first reach maximum speed after time t = 0?
- (e) The velocity V of a particle decreases according to the equation:

$$\frac{dV}{dt} = -k(V - P)$$

where t is the time in seconds and k is a positive constant. The initial velocity of the particle is 0 ms^{-1} and the terminal velocity or P is 60 ms^{-1} .

- (i) Verify that $V = P + Ae^{-h}$ is a solution of the above equation, where A is a constant.
- ii) What is the value of k if the velocity of the particle after 10 seconds is 35 ms⁻¹? Answer correct to two significant places.

Que	estjon l	12 (15 marks)	Marks
(a)		(x, p^2) and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$.	
	(i)	the midpoint of PQ . Show that $(p-q)^2 = 2(p^2 + q^2) - (p+q)^2$.	1
	(ii)	If P and Q move on the parabola so that $p-q=4$, show that the	2
	(11)	locus of M is the parabola $x^2 = 4y - 16$.	<u>-</u> ,
	(iii)	What is the focus of the locus of M?	1
(b)	initial greate	ne is projected from the top of an 80 metre high vertical cliff with an a velocity of $V \mathrm{ms^{-1}}$ at an angle of projection of θ . It reaches its est height after 3 seconds and hits the ground at a horizontal distance of a from the foot of the cliff. Assume $g = 10 \mathrm{ms^{-2}}$.	
	(i)	Determine the parametric equations of the path. Use the top of the vertical cliff as the origin.	2
	(ii)	Show that $V \sin \theta = 30$.	1
	(iii)	Show that the stone reaches the ground after 8 seconds.	1
	(iv)	Show that $V \cos \theta = 40$.	1
	(v)	Find the value of V and the angle of projection θ .	2
(c)	The a	ngle between the lines $y = mx$ and $y = \frac{1}{2}x$ is 45°. Find the value of m.	2
(d)	State	the domain and range of $y = 4\cos^{-1}\left(\frac{3x}{2}\right)$.	2

Que	estion 1	13 (15 marks)	Marks
(a)	Use ti	the substitution $u = x + 1$ to evaluate $\int_0^{15} \frac{x}{\sqrt{x+1}} dx$.	3
(b)	Use th	the principle of mathematical induction to prove for $n \ge 1$ that $\frac{1}{2!} + \frac{3}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$	3
(c)	(i)	Express $\cos x - \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$ where $R > 0$ and α is an acute angle.	2
	(ii)	Hence or otherwise, solve the equation $\cos x - \sqrt{3} \sin x = 2$ for $0 \le x \le 2\pi$.	1
(d)		are the roots of the equation $x^3 + 6x^2 - x - 30 = 0$ given one root is the of the other two roots?	3
(e)	Consi	der the function $f(x) = \frac{xe^x}{2}$ for $x \ge 0$.	
	(i)	Show that $f'(x) > 0$ for all x in the domain.	1
	(ii)	Explain why $f(x)$ has an inverse function $f^{-1}(x)$.	1
	(iii)	Copy the sketch of $y = f(x)$ below and insert a sketch of $y = f^{-1}(x)$.	1

Question 14 (15 marks)

Marks

2

2

- (a) A particle is moving in a straight line with simple harmonic motion. At time t seconds it has displacement x metres from a fixed point θ on the line, velocity ν ms⁻¹ and acceleration a ms⁻² is given by a=-4x+4. Initially, the particle is 2 m to the right of θ and is moving away from θ with a speed of $2\sqrt{3}$ ms⁻¹.
 - (i) Use integration to show that $v^2 = -4(x-3)(x+1)$.
 - (ii) Hence find the centre and amplitude of the motion.
- (b) (i) Expand $(1+x)^n$ using the binomial theorem.
 - (ii) Show that $\sum_{r=1}^{n} {}^{n}C_{r} = 2^{n} 1$
 - (iii) Show that $\frac{1}{n+1} \sum_{r=1}^{n+1} {n+1 \choose r} = \sum_{r=0}^{n} \frac{1}{r+1} {n \choose r}$ Hint: Integrate the identity in part (i) between the limits of 0 and 1.
- Five players are selected at random from four sporting teams.Each of the teams consists of ten players numbered from 1 to 10.
 - (i) What is the probability that of the five selected players, three are numbered '1' and two are numbered '7'?
 - (ii) What is the probability that the five selected players contain at least four players from the same team?
- (d) Find all real x such that $|4x-1| > 2\sqrt{x(1-x)}$

End of paper

ACE Examination 2016

HSC Mathematics Extension 1 Yearly Examination

Worked solutions and marking guidelines

Section	ı I	
	Solution	Criteria
1	$\begin{vmatrix} x-2y+1=0 & 2x-y-1=0 \\ y=\frac{1}{2}x+\frac{1}{2} & y=2x-1 \\ m_1=\frac{1}{2} & m_2=2 \end{vmatrix}$ $\tan \theta = \left \frac{m_1-m_2}{1+m_1m_2} \right = \left \frac{\frac{1}{2}-2}{1+\frac{1}{2}\times 2} \right = \frac{3}{4}$ $\theta = 36.86989765$ $\approx 37^{\circ}$	1 Mark: A
2	$x \neq 1 \text{ or } x \neq -1$ $x \to \infty y = \frac{1}{(x+1)(x-1)} = \frac{1}{(x+1)} \times \frac{1}{(x-1)} \to 0$ $\therefore x = 1, \ x = -1 \text{ and } y = 0 \text{ are asymptotes.}$ Number of asymptotes is 3.	1 Mark: C
3	$\int \frac{dx}{\sqrt{4-x^2}} = \sin^{-1}\frac{x}{2} + C$	1 Mark: C
4	x=t-3 or t = x+3 Substitute $x+3$ for t into $y=t^2+2$ $y=(x+3)^2+2=x^2+6x+11$	1 Mark; D
5	$v^{2} = 36 - 4x^{2}$ $= 2^{2}(9 - x^{2}) = n^{2}(a^{2} - x^{2})$ $a^{2} = 9 \text{ or } a = 3, n = 2 \text{ and } \alpha = 0 \text{ (initially at the origin)}$ $x = a\sin(nt + \alpha)$ $= 3\sin(2t)$	1 Mark: B
6	$x^{2} \times \frac{x^{2} - 4}{x} \ge 0 \times x^{2} x \ne 0$ $x(x^{2} - 4) \ge 0$ $x(x - 2)(x + 2) \ge 0$ $-2 \le x < 0 \text{ or } x \ge 2$	1 Mark: A

•	$u = 2x + 1 \qquad x = 1 \text{ then } u = 3$	
1	du = 2dx x = 0 then u = 1	
	$\int_{0}^{1} \frac{4x}{2x+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \times \frac{1}{2} du$	
7	2311	1 Mark: B
	$=\int_1^3 1 - \frac{1}{u} du$	
	$= [u - \log_{\bullet} u]^3$	
<u> </u>	$= [(3 - \log_{e} 3) - (1 - \log_{e} 1)] = 2 - \log_{e} 3$	
	$\int (\cos^2 x + 2\sec^2 x) dx = \int \left(\frac{1}{2}(1 + \cos 2x) + 2\sec^2 x\right) dx$	
8	$\int_{0}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \cos 2x \right) + 2 \sec x \right) \right) dx$	1 Mark: C
	$= \frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$	
	m 201,232-1 (2)	
	$T_{r+1} = {}^{9}C_{r}(x^{2})^{9-r} \left(-\frac{2}{x}\right)^{r}$	
	$= {}^{9}C_{r}x^{18-2r}(-2)^{r}x^{-r} = {}^{9}C_{r}(-2)^{r}x^{18-3r}$	
9	Term independent of x	1 Mark: B
-	18-3r=0	
	$a = 3x^2$	
	$v^2 = 2\int (3x^2) dx = 2x^3 + C$	
	When $x=1$, $y=-\sqrt{2}$ then $C=0$	
	$v = -\sqrt{2x^3} (v < 0 \text{ when } x = 1)$	
	$\frac{dx}{dt} = -\sqrt{2x^3}$	
	$\frac{dt}{dx} = -\frac{1}{\sqrt{2}}x^{-\frac{3}{2}}$	
10	1 V2	1 Mark: C
	$t = \frac{2}{\sqrt{2}}x^{-\frac{1}{2}} + C$	
	When $t = 0$, $x = 1$ then $C = -\sqrt{2}$	
	$t = \sqrt{2}x^{\frac{1}{2}} - \sqrt{2}$	
	$x^{-\frac{1}{2}} = \frac{t + \sqrt{2}}{\sqrt{2}}$	
	1 • • • • • • • • • • • • • • • • • • •	
	$x = \frac{2}{(t + \sqrt{2})^2}$	
L	I	L

Section	ı II	
11(a)	$f(x) = x - 2\sin x$	2 Marks:
	$f'(x) = 1 - 2\cos x$	Correct answer.
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	1 Mark: Finds f(1.6), f'(1.6)
	$=1.6 - \frac{1.6 - 2\sin 1.6}{1 - 2\cos 1.6}$ $=1.977123551$	or shows some understanding of Newton's
	≈1.98	method.
11(b)	$\angle BAF = \angle BCA$ (Angle between a tangent and a chord is equal to the angle in the alternate segment)	3 Marks: Correct answer. 2 Marks: Makes
	$\angle BCA = \angle DCA$ (CA bisects $\angle BCD$) $\angle DCA = \angle DBA$ (Angles in the same segment of a circle are equal) $\angle BAF = \angle DBA$ (from above) $\therefore EAF \Box DB$ (Alternate angles $\angle BAF = \angle DBA$ are only equal when two lines are parallel)	some progress towards the solution. 1 Mark: States one relevant statement and circle theorem.
11(c)	$\int_0^{\frac{\pi}{3}} \sin^2 x dx = \int_0^{\frac{\pi}{3}} \frac{1}{2} (1 - \cos 2x) dx$	2 Marks: Correct answer.
	$= \left[\frac{1}{2} x - \frac{1}{4} \sin 2x \right]_0^{\frac{\pi}{3}}$ $= \left[\left(\frac{\pi}{6} - \frac{1}{4} \sin \frac{2\pi}{3} \right) - \left(0 - \frac{1}{4} \sin 0 \right) \right]$	1 Mark: Applies the double angle trig identity.
	$= \frac{\pi}{6} - \frac{\sqrt{3}}{8}$ $= \frac{4\pi - 3\sqrt{3}}{24}$	·
11(d) (i)	Simple harmonic motion occurs when $\ddot{x} = -n^2x$ Now $x = 1 + \sqrt{3}\cos 4t + \sin 4t$	2 Marks: Correct answer.
	$\dot{x} = -\sqrt{3} \times 4 \sin 4t + 4 \cos 4t$ $\ddot{x} = -\sqrt{3} \times 4^2 \cos 4t - 4^2 \sin 4t$ $= -4^2 \left(\sqrt{3} \cos 4t + \sin 4t \right)$ $\ddot{x} = -4^2 (x - 1)$	1 Mark: Recognises the condition for SHM.

11(d)	$x = 1 + \sqrt{3}\cos 4t + \sin 4t$	1 Mark: Correct
(ii)		answer.
	$=1+2\sin\frac{\pi}{3}\cos 4t+2\cos\frac{\pi}{3}\sin 4t$,
	$=1+2\left[\sin 4t\cos\frac{\pi}{3}+\cos 4t\sin\frac{\pi}{3}\right]$	
	$=1+2\sin(4t+\frac{\pi}{3})$,
1.	(In the form $x = b + a\sin(nt + \alpha)$)	
	Amplitude is 2.	-
11(d)	Maximum speed at $\ddot{x} = 0$ or $x = 0$ (centre of motion)	2 Marks:
(iii)	$\ddot{x} = -4^2 \left(\sqrt{3} \cos 4t + \sin 4t \right) = 0$	Correct answer.
	$\sin 4t + \sqrt{3}\cos 4t = 0$	1 Mark: Makes
	$\frac{\sin 4t}{\cos 4t} = -\sqrt{3}$	some progress
	***************************************	towards the solution.
	$\tan 4t = -\sqrt{3}$	
	$4t = \frac{2\pi}{3}, \frac{5\pi}{3}, \dots$	
	$t = \frac{\pi}{6}, \frac{5\pi}{12}, \dots$	
	Particle first reaches maximum speed at $t = \frac{\pi}{6}$	
11(e)	$V = P + Ae^{-h}$ or $Ae^{-h} = V - P$	1 Mark: Correct
(i)	$\frac{dV}{dt} = -kAe^{-kt}$	answer.
	ai	
	=-k(V-P)	
11(e) (ii)	Initially $t = 0$ and $V = 0$, $P = 60$	2 Marks: Correct answer.
(1)	$V = P + Ae^{-k}$	Contect answer.
	$0=60+Ae^{-k\cdot 0}$	1 Mark: Finds
	A = -60	the value of A .
	Also $t=10$ and $V=35$	
	$35 = 60 - 60e^{-k\pi 10}$	
	$e^{-10k} = \frac{25}{60}$	
	$-10k = \log_e \frac{25}{60}$	
	$k = \frac{1}{10} \log_e \frac{25}{60} = \frac{1}{10} \log_e \frac{60}{25}$	
	= 0.087546873≈ 0.088	

12(a) (i)	RHS = $2(p^2 + q^2) - (p+q)^2$ = $2p^2 + 2q^2 - p^2 - 2pq - q^2$ = $p^2 - 2pq + q^2$ = $(p-q)^2$ = LHS	1 Mark: Correct answer.
12(a) (ii)	Coordinates of $M\left(\frac{2p+2q}{2}, \frac{p^2+q^2}{2}\right)$ or $\left(p+q, \frac{p^2+q^2}{2}\right)$ Using the result in (i) and $p-q=4$ (given) $(p-q)^2=2(p^2+q^2)-(p+q)^2$ $4^2=2(2y)-(x)^2$ $x^2=4y-16$ Therefore the locus of M is the parabola $x^2=4y-16$	2 Marks: Correct answer. 1 Mark: Determines the coordinates of M or makes some progress.
12(a) (iii)	Now $x^2 = 4y - 16$ = $4(y-4)$ Focal length is 1, vertex (0,4) and parabola is concave up. Focus is (0,5)	1 Mark: Correct answer.
12(b) (i)	Horizontal $\ddot{x} = 0$ $\dot{x} = V \cos \theta$ $x = V \cos \theta t + C$ When $t = 0$, $x = 0$ implies $C = 0$ $x = V \cos \theta t$ Vertical $\ddot{y} = -10$ $\dot{y} = -10t + V \sin \theta$ $y = -5t^2 + V \sin \theta t + C$ When $t = 0$, $y = 0$ implies $C = 0$ $y = -5t^2 + V \sin \theta t$	2 Marks: Correct answer. 1 Mark: Finds horizontal or vertical parametric equations or shows some understanding of the problem.
12(b) (ii)	Greatest height when $\dot{y} = 0$ at $t = 3$ $\dot{y} = -10t + V \sin \theta$ $0 = -10 \times 3 + V \sin \theta$ $\therefore V \sin \theta = 30$	1 Mark: Correct answer.

(iii) $y = -5t^2 + V \sin \theta t$ $-80 = -5t^2 + 30t$ $t^2 - 6t - 16 = 0$ $(t - 8)(t + 2) = 0$ $\therefore t = 8 \text{ (t must be positive)}$ $12(b)$ (iv) Stone reaches the ground when $x = x = V \cos \theta t$ $320 = V \cos \theta \times 8$ $\therefore V \cos \theta = 40$ $12(b)$	= 320 at <i>t</i> = 8	1 Mark: Correct answer.
$-80 = -5t^{2} + 30t$ $t^{2} - 6t - 16 = 0$ $(t - 8)(t + 2) = 0$ $\therefore t = 8 \text{ (t must be positive)}$ $12(b)$ (iv) Stone reaches the ground when $x = x = V \cos \theta t$ $320 = V \cos \theta \times 8$ $\therefore V \cos \theta = 40$	= 320 at $t = 8$	
$(t-8)(t+2) = 0$ $\therefore t = 8 \text{ (t must be positive)}$ $12(b) \text{ (iv)} \qquad \text{Stone reaches the ground when } x = x = V \cos \theta t$ $320 = V \cos \theta \times 8$ $\therefore V \cos \theta = 40$	= 320 at t = 8	
	= 320 at <i>t</i> = 8	
12(b) Stone reaches the ground when $x = x = V \cos \theta t$ $320 = V \cos \theta \times 8$ $\therefore V \cos \theta = 40$	=320 at $t=8$	
(iv) $x = V \cos \theta t$ $320 = V \cos \theta \times 8$ $\therefore V \cos \theta = 40$	= 320 at t = 8	
100		1
1 1 (17) 1	W-! 0	2 Marks:
(v) $V^2 = \dot{x}^2 + \dot{y}^2$ ta	$\sin\theta = \frac{V\sin\theta}{V\cos\theta}$	Correct answer.
$-(V\cos\phi)^2+(V\sin\phi)^2$	7 0000	
$= 40^2 + 30^2 = 2500$	$=\frac{30}{40}$	1 Mark: Finds V
V = 50	$\theta = 36^{\circ}52'$	or θ
12(c) For $y = mx$ then $m_1 = m$. For y	$y = \frac{1}{2}x \text{ then } m_2 = \frac{1}{2}$	2 Marks: Correct answer.
$\tan 45^{\circ} = \left \frac{m - \frac{1}{2}}{1 + m \times \frac{1}{2}} \right $ $1 = \left \frac{2m - 1}{2} \times \frac{2}{2 + m} \right \text{ or } \left \frac{2m - 1}{2 + m} \right $ $\frac{2m - 1}{2 + m} = 1 \qquad \text{ or } \frac{2m - 1}{2 + m} = 2m - 1 = 2 + m$ $2m - 1 = 2 + m \qquad 2m - 1 = m = 3 \qquad m = 3$	-1 -2-m	1 Mark: Uses the formula with one correct gradient.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ange: $0 \le \cos^{-1} \left(\frac{3x}{2} \right) \le \pi$	2 Marks: Correct answer.
$-\frac{2}{3} \le x \le \frac{2}{3}$	$0 \le \frac{y}{4} \le \pi$ $0 \le y \le 4\pi$	1 Mark: Finds the domain or the range.
13(a) $u = x+1$ when $x = 0$ then	u=1	3 Marks:
$\frac{du}{dx} = 1 \text{ or } du = dx \qquad x = 15 \text{ then}$	u = 16	Correct answer. 2 Marks: Finds
$\int_0^{15} \frac{x}{\sqrt{x+1}} dx = \int_1^{16} \frac{u-1}{\sqrt{u}} du = \int_1^{16} \left(u^{\frac{1}{4}} \right)^{\frac{1}{4}} du$	$-u^{-\frac{1}{2}}du$	the primitive as a function of <i>u</i> .
$= \left[\frac{2}{3}u^{\frac{1}{2}} - 2u^{\frac{1}{2}}\right]_{1}^{16}$ $= \left(\frac{2}{3} \times 16^{\frac{1}{2}} - 2 \times 16^{\frac{1}{2}}\right) - \frac{1}{2}$	$\left(\frac{2}{3} \times 1^{\frac{3}{2}} - 2 \times 1^{\frac{1}{4}}\right) = 36$	1 Mark: Sets up the integration using the substitution

13(b)	0. 4 70 1 1 1 1	3 Marks:
13(0)	Step 1: To prove the statement true for $n=1$	Correct answer.
	LHS = $\frac{1}{2!} = \frac{1}{2}$ RHS = $1 - \frac{1}{2!} = 1 - \frac{1}{2} = \frac{1}{2}$	
	Result is true for $n=1$	2 Marks: Proves
	Step 2: Assume the result true for $n = k$	the result true for $n=1$ and
		attempts to use
	$\left \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} \right = 1 - \frac{1}{(k+1)!}$	the result of
	To prove the result is true for $n = k + 1$	n=k to prove
	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{(k+1)}{(k+2)!} = 1 - \frac{1}{(k+2)!}$	the result for $n = k + 1$.
	LHS = $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{(k+1)}{(k+2)!}$	1 Mark: Proves
	2. 2 (6.13)	the result true
	$=1-\frac{1}{(k+1)!}+\frac{(k+1)}{(k+2)!}$	for $n=1$.
	$=1-\frac{(k+2)}{(k+2)(k+1)!}+\frac{(k+1)}{(k+2)!}$	į
	LHS = $1 - \frac{(k+2) - (k+1)}{(k+2)!}$	
	$=1-\frac{1}{(k+2)!}=\text{RHS}$	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Result true by principle of mathematical induction.	
13(c)	$R\cos(x+\alpha) = \cos x - \sqrt{3}\sin x$	2 Marks:
(i)	$R\cos(x+\alpha) = R\cos x \cos \alpha - R\sin x \sin \alpha$	Correct answer.
		·
	Hence $R\cos\alpha = 1$ and $R\sin\alpha = \sqrt{3}$	1 Mark:
	Dividing these equations $\tan \alpha = \frac{\sqrt{3}}{1}$ or $\alpha = \tan^{-1} \sqrt{3}$ or $\frac{\pi}{3}$	Determines the value of α or R
	Squaring and adding the equations $R^2 = 1^2 + \sqrt{3}^2$ or $R = 2$	
	$\cos x - \sqrt{3}\sin x = 2\cos(x + \frac{\pi}{3})$	
13(c) (ii)	$2\cos(x+\frac{\pi}{3})=2 \text{ from (i)}$	1 Mark: Correct answer.
	$\cos(x+\frac{\pi}{3})=1$	
	$x + \frac{\pi}{3} = 0, 2\pi, 4\pi, \dots$	
	$x = \frac{5\pi}{3}$	

12(1)		Taxe :
13(d)	Let the roots be α , β and γ with $\alpha = \beta + \gamma$	3 Marks:
1	$x^3 + 6x^2 - x - 30 = 0$	Correct answer.
-	$\alpha + (\beta + \gamma) = -\frac{b}{a} = -\frac{6}{1} = -6$	2 Marks:
1	$\alpha + (\beta + \gamma) = = -0$	Z Marks: Makes
İ	$\alpha + \alpha = -6$	significant
	$\alpha = -3$	progress
	<i>u</i> = -5	towards the
		solution.
	$\alpha\beta\gamma = -\frac{d}{a} = -\frac{-30}{1} = 30$	
]	· · · · · · · · · · · · · · · · · · ·	1 Mark: Finds
	$-3 \times \beta y = 30$	the sum or
	$\beta \gamma = -10 (1) .$	product of the
	Also $\beta + \gamma = -3$ (2)	roots.
	By inspection (or solving the equations 1 & 2 simultaneously)	
1		
	$\beta = -5$ and $\gamma = 2$	
	Roots are $x = -5$, $x = -3$ and $x = 2$	
13(e)	x = 1	1 Mark: Correct
(i)	$f'(x) = \frac{x}{2}e^x + e^x \frac{1}{2}$	answer.
	$e^{x}(x+1)$	
	$=\frac{e^x(x+1)}{2}$	
	> 0 when $x \ge 0$ then $e^x \ge 1$	
13(e)		1 Mark: Correct
(ii)	The function $y = f(x)$ is an increasing function defined for	answer.
()	$x \ge 0$. It has no turning points in this domain. Hence an inverse	and 1101.
	function $y = f^{-1}(x)$ exists as the function $y = f(x)$ is a one-to-	
	one increasing function (it satisfies the horizontal line test).	·
13(e)		1 Mark: Correct
(iii)	2 1	answer.
	G-14.)	
	$y=f^{-1}(x)$	
	<u> </u>	
	1 2	
]
L	<u> </u>	

14(a) (i)	$\frac{d}{dx}(\frac{1}{2}v^2) = -4x + 4$	2 Marks: Correct answer.
	$\frac{1}{2}v^2 = -2x^2 + 4x + C$ When $t = 0$, $x = 2$, $v = 2\sqrt{3}$	1 Mark: Finds an expression
	$\frac{1}{2} \times (2\sqrt{3})^2 = -2 \times 2^2 + 4 \times 2 + C$	for $\frac{1}{2}v^2$ in terms of x .
	C=6	
	$\frac{1}{2}v^2 = -2x^2 + 4x + 6$ $v^2 = -4x^2 + 8x + 12$	
	$v^{2} = -4x^{2} + 8x + 12$ $= -4(x^{2} - 2x - 3)$	-
	$v^2 = -4(x-3)(x+1)$	
14(a) (ii)	When $v = 0$ indicates the boundaries for displacement. $\{x: -1 \le x \le 3\}$	1 Mark; Correct answer.
	Therefore motion is centred at 1 m to the right of O with an amplitude of 2 m.	
14(b) (i)	$(1+x)^n = {}^nC_01^n + {}^nC_11^{n-1}x^1 + {}^nC_21^{n-2}x^2 + \dots + {}^nC_n1^1x^n$ $= {}^nC_0 + {}^nC_1x^1 + {}^nC_2x^2 + \dots + {}^nC_nx^n$	1 Mark: Correct answer.
14(b) (ii)	Substitute $x = 1$ into the above identity. $(1+1)^n = {}^nC_0 + {}^nC_1 \times 1^1 + {}^nC_2 \times 1^2 + + {}^nC_n \times 1^n$ $2^n = 1 + {}^nC_1 + {}^nC_2 + + {}^nC_n \qquad ({}^nC_0 = 1)$ $\sum_{r=0}^n {}^nC_r = 2^n - 1$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
14(b) (iii)	$\int_{0}^{1} (1+x)^{n} dx = \int_{0}^{1} {^{n}C_{0}} + {^{n}C_{1}}x^{1} + {^{n}C_{2}}x^{2} + \dots + {^{n}C_{n}}x^{n} dx$ $\left[(1+x)^{n+1} \right]^{1} \left[1 + x \right] \left$	2 Marks: Correct answer.
-	$\begin{bmatrix} \frac{(1+x)^{n+1}}{n+1} \end{bmatrix}_0^1 = \begin{bmatrix} {}^{n}C_0x + \frac{1}{2} {}^{n}C_1x^2 + \frac{1}{3} {}^{n}C_2x^3 + \dots + \frac{1}{n+1} {}^{n}C_nx^{n+1} \end{bmatrix}_0^1$ $\frac{1}{n+1} [2^{n+1} - 1] = {}^{n}C_0 + \frac{1}{2} {}^{n}C_1 + \frac{1}{3} {}^{n}C_2 + \dots + \frac{1}{n+1} {}^{n}C_n$	1 Mark: Makes some progress towards the solution.
	$\frac{1}{n+1}\sum_{r=1}^{n+1}{}^{n+1}C_r = \sum_{r=0}^{n}\frac{1}{r+1}{}^{n}C_r$	

14(c) (i)	The 5 selected players come from 4 teams of 10 (40 players) of whom 4 have a number '1' and 4 have a number '7'.	2 Marks: Correct answer.
	Number of possible selections is 40 C ₅	
	Number of possible selections of three '1' is 4C_3	1 Mark: Shows some
	Number of possible selections of two '7' is 4C_2	understanding.
	$P(E) = \frac{{}^{4}C_{3} \times {}^{4}C_{2}}{{}^{40}C_{5}}$	
	$=\frac{1}{27,417}$	
14(c) (ii)	5 players from the same team (4 teams with 10 players in each)	2 Marks:
(11)	$P(5 \text{ players}) = \frac{{}^{4}C_{1} \times {}^{10}C_{5}}{{}^{40}C_{4}} = \frac{14}{9.139}$	Correct answer.
	4 players from the same team (4 teams with 10 players in each)	1 Mark: Finds the probability
	$P(4 \text{ players}) = \frac{{}^{4}C_{1} \times {}^{10} C_{4} \times {}^{30} C_{1}}{{}^{40}C_{5}}$	of 5 players or 4 players.
	$=\frac{350}{9,139}$	
	$P(E) = \frac{14}{9,139} + \frac{350}{9,139}$	
	$=\frac{28}{703}$	
14(d)	Inequality is only defined for $x(1-x) \ge 0$	3 Marks:
	(Cannot find the square root of a negative number)	Correct answer.
	$0 \le x \le 1 (1)$	2 Marks: Finds
Ì	Using the result $ x = \sqrt{x^2}$ or $ 4x-1 = \sqrt{(4x-1)^2}$	one correct
	$\sqrt{(4x-1)^2} > 2\sqrt{x(1-x)}16x$	region or makes significant
	$(4x-1)^2 > 4x(1-x)$	progress.
	$16x^2 - 8x + 1 > 4x - 4x^2$	1 N de also Pilos de
	$20x^2 - 12x + 1 > 0$	1 Mark: Finds 0≤x≤1 or uses
	(10x-1)(2x-1) > 0	$ x = \sqrt{x^2}$ or
	$ \therefore x < \frac{1}{10} \text{ or } x > \frac{1}{2} $ (2)	shows some understanding.
	Combining results (1) and (2)	
	$\therefore 0 \le x < \frac{1}{10} \text{ and } \frac{1}{2} < x \le 1$	