ACE	Examinations

Student Name:	

2016 YEAR 12 YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the value of $\lim_{x\to 7} \frac{x^2 + 5x 84}{x 7}$?
 - (A) -5
 - (B) 0
 - (C) 12
 - (D) 19
- 2 What are the conditions for the expression $ax^2 + bx + c = 0$ to be positive definite?
 - (A) c > 0 and $\Delta < 0$
 - (B) c > 0 and $\Delta > 0$
 - (C) a > 0 and $\Delta < 0$
 - (D) a > 0 and $\Delta > 0$
- 3 What is the value of $\sum_{r=1}^{4} 2^{1-r}$?
 - (A) $\frac{1}{64}$
 - (B) $\frac{9}{8}$
 - (C) $\frac{15}{8}$
 - (D) $\frac{9}{4}$
- 4 What is the greatest value of the function $y = 4 2\cos x$?
 - (A) 2
 - (B) 4
 - (C) 6

(D) 8

- 5 What is the solution to the equation $\log_e(x+2) \log_e x = \log_e 4$?
 - (A) $\frac{2}{5}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{3}{2}$
 - (D) $\frac{5}{2}$
- 6 What is the derivative of $y = \frac{e^{2x} + 4}{x^3}$?
 - $(A) \quad \frac{e^{2x}}{3x^2}$
 - (B) $\frac{2xe^{2x}-3e^{2x}-12}{x^4}$
 - (C) $\frac{2xe^{2x}-3e^{2x}-12}{x}$
 - (D) $\frac{2xe^{2x}+3e^{2x}+12}{x^4}$
- 7 Solve for x: |2x+3| = -x+3.
 - (A) There are no solutions.
 - (B) There is only one solution.
 - (C) There are two solutions.
 - (D) There are three solutions.
- 8 Two-digit numbers are formed from the digits 2, 3, 4, 6 with no repetition of digits allowed. A two-digit number is then selected at random. What is the probability that the number is prime?
 - (A) $\frac{1}{12}$
 - (B) $\frac{1}{8}$
 - (C) $\frac{1}{6}$
 - (D) $\frac{5}{12}$

9 The gradient function of a curve is $\frac{dy}{dx} = 3 - \frac{2}{x^2}$.

What is the equation of the curve if it passes through the point (1,-2)?

- (A) $y = \frac{4}{x^3}$
- (B) $y = \frac{2}{x} 4$
- (C) $y = 3x \frac{2}{x} \frac{2}{x}$
- (D) $y = 3x + \frac{2}{x} 7$
- 10 What is the domain and range of the function $y = \frac{1}{\sqrt{x-9}}$?
 - (A) $\{x: x \ge 9\}$ and $\{y: y > 0\}$
 - (B) $\{x: x > 9\}$ and $\{y: y > 0\}$
 - (C) $\{x: -\infty \le x \le \infty\}$ and $\{y: -\infty \le y \le \infty\}$
 - (D) $\{x:-3 \ge x \ge 3\}$ and $\{y:y<0\}$

Section II

90 marks

Attempt Questions 11 - 16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Marks

(a) Simplify
$$\frac{5}{r-2} - \frac{2}{r-3}$$

2

(b) Express $\frac{1}{\sqrt{5}-2}$ with a rational denominator.

2

(c)

The diagram shows a regular pentagon MNOPQ. Each of the sides MN, NO, OP, PQ and QM is of length x metres. Each of the angles $\angle MNO$, $\angle NOP$, $\angle OPQ$, $\angle PQM$ and $\angle QMN$ is 108°.

- (i) Show that triangle NOP is isosceles and hence find $\angle ONP$.
 - Triangle NOP is isosceles and hence find $\angle ONP$.
- (ii) Show that triangles NOP and PQM are congruent.(iii) Find the size of ∠MPN.

Ţ

- (d) Boxes are stacked in layers, where each layer contains one box less than the layer below. There are six boxes in the top layer, seven boxes in the next layer, and so on. There are n layers altogether.
 - (i) Write down the number of boxes in the bottom layer.

2

- (ii) Show that there are $\frac{1}{2}n(n+11)$ boxes.
- (e) A particle moves along the x-axis with acceleration 3t-2. Initially it is 4 units to the right of the origin, with a velocity of 2 units per second.
 What is the position of the particle after 5 seconds?

Question 12 (15marks)

Marks

(a) (i) Find $\int \frac{x}{x^2+3} dx$

2

(ii) Evaluate $\int_0^{\frac{\pi}{3}} \cos 2x dx$.

2

2

(b)

The diagram shows the points B(-1,-4), C(-3,-1) and D(6,5) in the Cartesian plane. The point A(a,0) is the point where the line AB intersects with the x-axis.

(i)	Show that the gradient of CD is $\frac{2}{3}$.	1
(ii)	Find the equation of CD.	2
(iii)	If $AB \square CD$ find the value of a, the x-coordinate of the point A.	2
(iv)	Show the distance BC is $\sqrt{13}$.	` 1
(v)	Find the size of angle θ correct to the nearest minute.	1

(c) A particle moves so that its displacement from the origin is x = -t² + 6t + 7 where x is displacement in metres and t is time in seconds
(i) What is the initial displacement of the particle?
(ii) When will the particle be at the origin?

Find the perpendicular distance from B to the line CD.

Marks

(a) A small segment of a circle has been removed as shown below.
 The circle has a centre O and radius 0.9 metres.
 The length of the straight edge AB is also 0.9 metres.

Not to scale

(i) Explain why $\angle AOB = \frac{\pi}{3}$.

1

(ii) What is the shaded area?

3

(b) Find the value of k if the sum of the roots of $x^2 - (k-1)x + 2k = 0$ is equal to the product of the roots.

(c)

In the diagram, ABCD is a rhombus where $\angle ABD = 27^{\circ}$ and AD is produced to E. Copy the diagram onto your answer sheet.

(i) What is the value of $\angle ABC$?

1

(ii) What is the value of ∠CDE? Give reasons.

2

- (d) Aiden plays a game where he rolls two dice. The first die has three red faces, two white faces and one blue face. The other die has two red faces, two white faces and two blue faces.
 - (i) Copy and complete the tree diagram below to show all the possible outcomes and their probabilities.

- (ii) Find the probability both dice show red.
- (iii) Find the probability one die shows red and one die shows white.
- (iv) Find the probability both dice do not show red or both dice do not show blue.
- (e) The second term of an arithmetic series is 37 and the sixth term is 17.

 What is the sum of the first ten terms?

Que	estion 14 (15 marks)	Marks
(a)	Consider the function $f(x) = 4x^3 - 4x^2$.	
	(i) Find the stationary points and determine their nature.	3
	(ii) Sketch the graph of the function $y = f(x)$ showing these stationary points.	2
	(iii) Show the point(s) at which $y = f(x)$ cuts the x-axis.	1
•	(iv) Determine the values of x for which $f(x)$ is positive.	1
(b)	Solve the equation $3^{2x} + 3^x - 12 = 0$.	2
(c)	Find the volume when $y = \log_e x$ is rotated about the y-axis between $y = 1$ and $y = 3$. Express your answer in exact form.	3
	·	
(d)	Differentiate with respect to x.	•
	(i) $(e^x-3)^4$	1
	(ii) x tan x	. 1
	(iii) $\log_{\epsilon}(\cos x)$	1

Question 15 (15 marks)

Marks

(a) Twenty kilograms of sugar is placed in a container of water and begins to dissolve. After t hours the amount A kg of undissolved sugar is $A = 20e^{-t}$

Calculate k, given that A = 4.8 when t = 5.

1

(ii) After how many hours does 1-kg of sugar remain undissolved?

2

(b)

The diagram shows the graphs $y = \sin x$ and $y = \cos x$ in the domain $0 \le x \le 2\pi$. The graphs intersect at points A and B.

(i) What are the coordinates of A and B?

2

1

3

2

(ii) Find the area enclosed by the two graphs between A and B.

- (c) On 1 June 2006, Patrick invested \$20,000 in a bank account that paid interest at a fixed rate of 7% per annum, compounded annually
 - (i) How much is in the account after the payment of interest on

 1 June 2016 if no additional deposits were made?
 - (ii) Patrick decided to add \$2000 to his account on 1 June each year beginning on 1 June 2007. How much is in his account on 1 June 2016 after the payment of interest and his deposit?
 - (iii) Patrick's friend Bella invested \$20,000 in an account at another bank on 1 June 2006 and made no further deposits. On 1 June 2016, the balance of Bella's account was \$49,565. What was the annual rate of compound interest paid on Bella's account?

d) Differentiate $\log_2 x^2$.

2

Question 16 (15 marks)

Marks

3

1

2

2

2

- (a) Find the equation of the normal to the curve $y = x \log_e x$ at the point on the curve where x = 1.
- (b) The speed of a train was recorded at intervals of one minute. The times, in minutes, and the corresponding speeds ν, in kilometres per hour, are listed in the table below.

Time (min)	0	1	2	3	4
Speed (km/h)	0	24	35	28	50 -

- (i) Explain why the distance x, in km, travelled by the train in these four minutes is given by $x = \int_{1}^{1} v dt$.
- (ii) Estimate x by using Simpson's Rule with five function values.
- (c) A parabola has the equation $16y = x^2 4x 12$
 - (i) Find the coordinates of the vertex.
 -) Find the coordinates of the focus.
 - (iii) Find the equation of the directrix.
- (d) A can is the shape of a closed cylinder with a height h cm and a radius r cm. The volume of the can is 200 cm³.
 - (i) Find an expression for h in terms of r.
 - (ii) Show that the surface area SA cm² of the can is given by the formula:

$$SA = 2\pi r^2 + \frac{400}{r}$$

(iii) If the area of the metal used to make the can is to be minimized, find the radius of the can.

End of paper

ACE Examination 2016

HSC Mathematics Yearly Examination

Worked solutions and marking guidelines

Section I			
	Solution	Criteria	
1	$\lim_{x \to 7} \frac{x^2 + 5x - 84}{x - 7} = \lim_{x \to 7} \frac{(x + 12)(x - 7)}{(x - 7)}$ $= \lim_{x \to 7} (x + 12) = 7 + 12$ $= 19$	1 Mark: D	
2	Positive definite (always positive – concave up) $a > 0$ and $\Delta < 0$	1 Mark: C	
3	$\sum_{r=1}^{4} 2^{1-r} = 2^{0} + 2^{-1} + 2^{-2} + 2^{-3}$ $= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ $= \frac{15}{8}$	1 Mark: C	
4	Range of values for $y = \cos x$ is $-1 \le y \le 1$ Greatest value for $4 - 2\cos x$ occurs when $\cos x = -1$ Therefore the greatest value is 6 $(4 - 2\cos x = 4 - 2 \times -1 = 6)$	1 Mark: C	
5	$\log_{e}(\frac{x+2}{x}) = \log_{e} 4$ $(\frac{x+2}{x}) = 4$ $x+2 = 4x$ $3x = 2$ $x = \frac{2}{3}$	1 Mark: B	
6	$y = \frac{e^{2x} + 4}{x^3}$ $\frac{dy}{dx} = \frac{x^3 \times 2e^{2x} - (e^{2x} + 4) \times 3x^2}{x^6}$ $= \frac{x^2 (2xe^{2x} - 3e^{2x} - 12)}{x^6} = \frac{2xe^{2x} - 3e^{2x} - 12}{x^4}$	1 Mark: B	

		_ т ·
7	2x+3=-x+3 or -(2x+3)=-x+3 $3x=0 -2x-3=-x+3$ $x=0 x=-6$ Therefore there are two solutions.	1 Mark: C
8	$S = \{23, 24, 26, 32, 34, 36, 42, 43, 46, 62, 63, 64\}$ $P(prime) = \frac{2}{12}$ $= \frac{1}{6}$	1 Mark: C
9	$\frac{dy}{dx} = 3 - \frac{2}{x^2} = 3 - 2x^{-2}$ $y = 3x + 2x^{-1} + C$ Point (1,-2) satisfies the equation. $-2 = 3 \times 1 + 2 \times 1^{-1} + C$ $C = -7$ $\therefore y = 3x + \frac{2}{x} - 7$	1 Mark: D
10	$\sqrt{x-9} \neq 0 \text{ or } x \neq 9$ Also $x-9>0 \text{ or } x>9$ Domain: $\{x:x>9\}$ $\lim_{x\to\infty} \frac{1}{\sqrt{x-9}} \to 0$ Range: $\{y:y>0\}$	1 Mark: B

Section	П	
11(a)	$\frac{5}{x-2} - \frac{2}{x-3} = \frac{5(x-3)}{(x-2)(x-3)} - \frac{2(x-2)}{(x-2)(x-3)}$ $= \frac{5x-15-2x+4}{(x-2)(x-3)}$ $= \frac{3x-11}{(x-2)(x-3)}$	2 Marks: Correct answer. 1 Mark: Finds a common denominator or shows some understanding.
11(b)	$\frac{1}{\sqrt{5}-2} = \frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$ $= \frac{\sqrt{5}+2}{5-4}$ $= \sqrt{5}+2$	2 Marks: Correct answer. 1 Mark: Multiples by the conjugate.
11(c) (i)	Consider $\triangle NOP$ $NO = OP = x$ (given) $\triangle NOP$ is isosceles (two equal sides). Now $\angle NOP = 108^*$ (given) $\angle OPN = \angle ONP$ (base angles in an isosceles triangle are equal) $\angle NOP + \angle OPN + \angle ONP = 180^*$ (Angle of a triangle is 180°) $108^\circ + \angle ONP + \angle ONP = 180^\circ$ $2 \times \angle ONP = 180^\circ - 108^\circ$ $\angle ONP = 36^\circ$	2 Marks: Correct answer. 1 Mark: Shows ΔNOP is isosceles or finds ∠ONP.
11(c) (ii)	Consider $\triangle NOP$ and $\triangle PQM$ $OP = PQ \text{ (given)}$ $\angle NOP = \angle PQM \text{ (given both angles are 108°)}$ $NO = QM \text{ (given)}$ $\triangle NOP = \triangle PQM \text{ (SAS)}$	2 Marks: Correct answer. 1 Mark: One correct statement.
11(c) (iii)	$\angle OPQ = \angle QPM + \angle MPN + \angle OPN$ $108^{\circ} = 36^{\circ} + \angle MPN + 36^{\circ}$ $\angle MPN = 36^{\circ}$	1 Mark; Correct answer.
11(d) (i)	Number of boxes in each layer from the top are an AP: 6,7,8 $T_n = a + (n-1)d$ $= 6 + (n-1) \times 1$ $= 6 + n - 1$ $= n + 5$	2 Marks: Correct answer. 1 Mark: Recognises AP and uses nth term formula

11(4)		0.16-1
11(d) (ii)	Sum the boxes in each layer. $(a=6 \text{ and } l=n+5)$	2 Marks: Correct answer.
(11)	$S_n = \frac{n}{2}(a+l)$	Correct answer.
	n (c ->	1 Mark: Makes
	$=\frac{n}{2}(6+n+5)$	some progress
		towards the solution
	$=\frac{1}{2}n(n+11)$	solution
11(e)	a=3t-2	2 Marks: Correct answer.
-	$v = \frac{3t^2}{2} - 2t + C$	1- Mark:
	2 21+0	1- Mark;
	When $t=0$ then $v=2$	
	$2 = \frac{3 \times 0^2}{2} - 2 \times 0 + C \text{ or } C = 2$	
	$v = \frac{3t^2}{2} - 2t + 2$	
	$x = \frac{t^3}{2} - t^2 + 2t + k$	
	When $t = 0$ then $x = 4$	
	$4 = \frac{0^3}{2} - 0^2 + 2 \times 0 + k \text{ or } k = 4$	
	$x = \frac{t^3}{2} - t^2 + 2t + 4$	
	When $t=5$	
	$x = \frac{5^3}{2} - 5^2 + 2 \times 5 + 4 = 51.5$ units	·
	The particle is 51.5 units to the right after 5 seconds.	
12(a) (i)	$\int \frac{x}{x^2 + 3} dx = \frac{1}{2} \int \frac{2x}{x^2 + 3} dx$	2 Marks: Correct answer.
	$=\frac{1}{2}\log_x(x^2+3)+C$	1 Mark:
	$\frac{-2\log_e(x+3)}{2}$	Recognises the
		log function as the primitive.
100		
12(a)	$\int_{A}^{\pi} \int_{a}^{\pi} \int_{a$	2 Marks:
(ii)	$\int_0^{\frac{\pi}{3}} \cos 2x dx = \left[\frac{\sin 2x}{2}\right]_0^{\frac{\pi}{3}}$	Correct answer.
1	$\begin{bmatrix} 2\pi \end{bmatrix}$	1 Mark: Finds
	$= \left[\frac{\sin \frac{2\pi}{3}}{2} \right] - \left[\frac{\sin 0}{2} \right]$	the primitive
		function or
		shows some
	$=\frac{\sqrt{3}}{4}$	understanding.
L	T	L

. . - .

12(b) (i)	Gradient of <i>CD</i> : $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{51}{63} = \frac{6}{9} = \frac{2}{3}$	1 Mark: Correct answer.
12(b) (ii)	$y - y_1 = m(x - x_1)$	2 Marks: Correct answer.
ŧ	$y1 = \frac{2}{3}(x3)$	1 Mark: Uses the point-slope
	3y+3 = 2x+6 2x-3y+3 = 0	formula with one correct value.
12(b) (iii)	If AB is parallel to CD then it has the same gradient or $m = \frac{2}{3}$	2 Marks: Correct answer.
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	
	$\frac{2}{3} = \frac{-4 - 0}{-1 - a}$	1 Mark: Recognises that
		parallel lines
	-2-2a = -12 -2a = -10	have the same gradient.
	a = 5	
12(b) (iv)	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	1 Mark: Correct answer.
(17)	$BC = \sqrt{(-31)^2 + (-14)^2}$	answer.
ļ	$=\sqrt{4+9}$	
	= √ 1 3	
12(b) (v)	$\tan\theta = \frac{2}{3}$	1 Mark: Correct answer.
	$\theta = \tan^{-1}\frac{2}{3} = 33^{\circ}41'$	
12(b) (vi)	$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $	1 Mark: Correct answer.
	$= \left \frac{2 \times (-1) - 3 \times (-4) + 3}{\sqrt{2^2 + (-3)^2}} \right = \left \frac{13}{\sqrt{13}} \right = \sqrt{13}$	
12(c)	Initially $t = 0$ $x = -t^2 + 6t + 7$	i Mark: Correct
(i)	$=-0^2+6\times0+7=7$ m	answer.
12(0)	Initial displacement is 7 metres	236
12(c) (ii)	Particle is at the origin at $x = 0$. $x = -t^2 + 6t + 7$	2 Marks: Correct answer.
	$x = -t^{-} + 6t + 7$ $0 = -(t - 7)(t + 1)$	1 Mark: Uses
	t = 7 or $t = -1$ (ignore as time is always positive)	x = 0 and factorises the
	Particle is at the origin at 7 seconds.	quadratic.

13(a)	Consider $\triangle AOB$	1 Mark: Correct
(i)	OA = OB = 0.9 m (radii)	answer.
	AB = 0.9 m (given)	
	$\triangle AOB$ is an equilateral triangle (three equal sides).	
	$\angle AOB = \frac{\pi}{3} \text{ (all angles in an equilateral triangle are equal)}$	
13(a)	Area of the sector AOB Area of $\triangle AOB$	3 Marks:
(ii)	$A = \frac{1}{2}r^2\theta \qquad A = \frac{1}{2}ab\sin C$	Correct answer.
	$= \frac{1}{2} \times 0.9^2 \times \frac{\pi}{2}$ $= \frac{1}{2} \times 0.9 \times 0.9 \times \sin \frac{\pi}{2}$	2 Mark: Makes
	, 2, 3, 2, 3	significant progress such
	$= 0.135\pi \text{ m}^2 = \frac{81\sqrt{3}}{400} \text{ m}^2$	as finding at least two of the
	Area of minor segment Area of the circle	areas
	$A = \left(0.135\pi - \frac{81\sqrt{3}}{400}\right) \text{m}^2 \qquad A = \pi r^2 = \pi \times 0.9^2 = 0.81\pi \text{ m}^2$	1 Mark: Finds one of the
	Shaded area = $0.81\pi - \left(0.135\pi - \frac{81\sqrt{3}}{400}\right)$	required areas.
	$=0.675\pi + \frac{81\sqrt{3}}{400}$	
	= 2.47131533	
	≈ 2.47 m ²	
13(b)	$\alpha + \beta = -\frac{b}{a} = -\frac{-(k-1)}{1} = k-1$	2 Marks: Correct answer.
	$\alpha\beta = \frac{c}{a} = \frac{2k}{1} = 2k$	1 Mark: Finds
	Therefore $k-1=2k$	the sum or the product of the
	k = −1	roots.
13(c)	$\angle ABC = 2 \times 27^{\circ} = 54^{\circ}$	1 Mark: Correct
(i)	(diagonals of a rhombus bisect the angles through which they pass)	answer.
13(c)	$\angle BAD + \angle ABC = 180^{\circ}$	2 Marks:
(ii)	∠BAD+54° =180°	Correct answer.
	∠BAD = 126°	1 Mark; Correct
	(co-interior angles are supplementary with $AD \square BC$)	answer with
	$\angle CDE = \angle BAD$	insufficient
	=126°	reasoning.
	(corresponding angles are equal with $AB \square CD$)	

13(d) (i)	1st die 2nd die	1 Mark: Correct
(1)	3 Red	answer.
	Red 3 White	
	1 Blue	
	$\frac{1}{1}$ Red	
	$\frac{\frac{1}{3}}{3}$ White $\frac{\frac{1}{3}}{1}$ White	
	Blue	•
	1 Red	
	Blue	
	Blue	
13(d) (ii)	$P(RR) = \frac{1}{2} \times \frac{1}{3}$	1 Mark: Correct answer.
	$=\frac{1}{6}$	
13(d)	P(R and W) = P(RW) + P(WR)	1 Mark: Correct
(iii)		answer.
	$= \frac{1}{2} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3}$	1
	$=\frac{5}{18}$	
4041		
13(d) (iv)	P(E) = 1 - P(RR) - P(BB)	1 Mark: Correct answer.
	$=1-\frac{1}{2}\times\frac{1}{3}-\frac{1}{6}\times\frac{1}{3}$	
	$=\frac{7}{9}$	
	9	
13(e)	$T_n = a + (n-1)d$	2 Marks: Correct answer.
	$T_2 = a + d = 37(1)$	Correct answer.
	$T_6 = a + 5d = 17(2)$	I Mark: Finds
	Equation (2) – (1)	the general
	4d = -20	formula for the second and
	d = -5 Substitute $d = -5$ into Equation (1)	sixth terms.
	a-5=37 or a=42	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	$= \frac{10}{2} \left[2 \times 42 + (10 - 1) \times -5 \right]$	
	=195	

14(a)	Stationary points $f'(x) = 0$	3 Marks:
(i)	$f'(x) = 12x^2 - 8x$	Correct answer.
	$\int (x) = 12x - 6x$ $= 4x(3x-2)$	•
	` '	2 Marks: Finds
	$x = 0, x = \frac{2}{3}$	the stationary
:	2 16	points or makes significant
 - 	Stationary points are $(0,0)$ and $(\frac{2}{3}, -\frac{16}{27})$.	progress.
	f''(x) = 24x - 8	436 1 771 1
	At $(0,0)$, $f''(0) = -8 < 0$, Maximum stationary point	1 Mark: Finds the first
	At $\left(\frac{2}{3}, -\frac{16}{27}\right)$, $f''\left(\frac{2}{3}\right) = 8 > 0$, Minimum stationary point	derivative.
14(a) (ii)	. y	2 Marks:
(11)	2	Correct answer.
		1 Mark: Makes
	Maxima (0,0)	some progress
	(2 16)	towards
	$\xrightarrow{2}$ $\xrightarrow{1}$ $\xrightarrow{1}$ Minima $\left(\frac{2}{3}, -\frac{16}{27}\right)$	sketching the
		curve.
14(a)	The curve cuts the x-axis when $f(x) = 0$	1 Mark: Correct
(iii)	$f(x) = 4x^3 - 4x^2 = 4x^2(x-1) = 0$	answer.
	The curve cuts the x-axis at $x=0$ and $x=1$	
14(a)	f(x) > 0 when $x > 1$ (see graph)	1 Mark: Correct
(iv)) (x) > 0 whom x > 1 (see graph)	answer.
14(b)	$3^{2x} + 3^x - 12 = 0$	2 Marks: Correct answer.
	$(3^x)^2 + 3^x - 12 = 0$	Correct answer.
	Let $m=3^x$	1 Mark:
	$m^2 + m - 12 = 0$	Recognises a
	(m-3)(m+4)=0	quadratic equation.
	Therefore $m=3$ or $m=-4$	Cquation.
•	$3^x = 3 \qquad 3^x = -4$	
	x=1 No solution	

14(c)	$y = \log_e x$ or $x = e^y$	3 Marks: Correct answer.
	$V = \pi \int_1^3 x^2 dy$	2 Mark: Makes
	$=\pi\int_{1}^{3}\left(e^{\gamma}\right) ^{2}dy$	significant progress.
	$=\frac{\pi}{2}\left[e^{2\gamma}\right]^3$	1 Mark: Uses the volume
	A =	formula with at
	$= \frac{\pi}{2} \left(e^6 - e^2 \right) \text{ cubic units}$	least one correct value.
14(d) (i)	$\frac{d}{dx}(e^{x}-3)^{4} = 4(e^{x}-3)^{3}e^{x}$	1 Mark: Correct answer.
	$=4e^{x}\left(e^{x}-3\right)^{3}$	·
14(d) (ii)	$\frac{d}{dx}x\tan x = x\sec^2 x + \tan x$	1 Mark: Correct answer.
14(d)	$\frac{d}{dx}\log_e(\cos x) = \frac{1}{\cos x} \times (-\sin x)$	1 Mark: Correct
(iii)	$\frac{dx}{dx} = -\tan x$	answer.
15(a)	$4.8 = 20e^{-1xS}$	1 Mark: Correct
(i)	$e^{-5k} = 0.24$	answer.
	$-5k = \log_{\sigma} 0.24$	
,	$k = -\frac{\log_e 0.24}{5} \approx 0.2854232711$	
15(a)	We need to find t when $A=1$.	2 Marks:
(ii)	$1=20e^{-kt}$	Correct answer.
	$e^{-it} = \frac{1}{20}$	1 Mark: Makes
	$-kt = \log_{2} 0.05$	some progress towards the
	$t = \frac{5}{\log_e 0.24} \times \log_e 0.05 = 10.49575342 \approx 10 \text{ years}$	solution.
15(b)	$y = \sin x (1)$	2 Marks:
(i)	$y = \cos x (2)$	Correct answer.
	Equation (1) divided by equation (2)	1 Mark: Finds
	$\frac{\sin x}{\cos x} = 1 \text{ or } \tan x = 1$	one value for x or shows some
	$x = \frac{\pi}{4}, \frac{5\pi}{4}, \dots$	understanding.
	Therefore $A\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $B\left(\frac{5\pi}{4}, -\frac{1}{\sqrt{2}}\right)$	
L	<u> </u>	

,		·
15(b) (ii)	$A = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} [\sin x - \cos x] dx$	2 Marks: Correct answer.
	$= \left[-\cos x - \sin x\right]_{\frac{x}{4}}^{\frac{5x}{4}}$	1 Mark: Sets up the integral or
	$= \left(-\cos\frac{5\pi}{4} - \sin\frac{5\pi}{4}\right) - \left(-\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\right)$	shows some understanding.
	$= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)$ $= \frac{4}{\sqrt{2}} = 2\sqrt{2} \text{ square units}$	i i
	$\sqrt{2}$ = $2\sqrt{2}$ square divis	
15(c) (i)	$A = P(1+r)^n$ = \$20,000(1+0.07) ¹⁰ = \$39,343.02715	1 Mark: Correct answer.
	≈\$39,343.03	
15(c) (ii)	$A_{10} = 2,000(1.07)^{10} + 2,000(1.07)^9 + + 2,000$	3 Marks: Correct answer.
İ	$= 2,000 \times [(1.07)^{10} + (1.07)^{9} + + 1]$	2 Mark: Finds
	G.P. with $a = 1$, $r = 1.07$ and $n = 10$	the amount of
	$A_{10} = 2,000 \times \frac{1[1.07^{10} - 1]}{1.07 - 1}$	the annuity or makes
	1.07	significant
	=\$27,632.89592	progress.
	≈\$27,632.90	1 Mark:
	Final amount = \$39,343.03 + \$27,632.90	Identifies a G.P. with 10
	= \$66,975.93	terms.
15(c)	$A = P(1+r)^n$	2 Marks:
(iii)	$$49,565 = $20,000 \times (1+r)^{10}$	Correct answer.
	$(1+r)^{10} = 2.47825$	136 1 77
	$1+r = \sqrt[6]{2.47825}$	1 Mark: Uses the compound
	$r = \sqrt[14]{2.47825} - 1$	interest formula
	$r = \sqrt{2.47625} - 1$ = 0.095000989	with one correct value.
	≈ 9.5%	correct value.
15(d)		2 Marks:
	$\frac{d}{dx}\log_2 x^2 = \frac{d}{dx}\left(\frac{\log_e x^2}{\log_e 2}\right) \text{ (change in the base rule)}$	Correct answer.
	$= \frac{1}{\log_2 2} \times \frac{2x}{x^2}$	1 Mark: Uses
		the change in
	$=\frac{2}{x\log_{e}2}$	the base rule

16(a)	$y = x \log_e x$					· · · · · · · · · · · · · · · · · · ·	3 Marks:
	$\frac{dy}{dx} = x \times \frac{1}{x} + \log_e x \times 1 = 1 + \log_e x$					Correct answer.	
	$\int_{0}^{\infty} \frac{1}{dx} = x \times - \log_{e} x$:XI=I4	-log, x				O Martina Pinda
	At $x = 1$						2 Marks: Finds the gradient of
	$y = x \log_e x = 1 \times \log_e 1 = 0$						the normal.
	$\frac{dy}{dx} = 1 + \log_e x = 1$	+log,1	=1 (Grad	lient of t	he tange	nt)	1 Mark: Finds
	Gradient of the normal $m_1 m_2 = -1$ $m_1 \times 1 = -1$ or $m_1 = -1$						the derivative of the function.
,	Equation of the no	-		-			
	Equation of the normal $y-y_1 = m(x-x_1)$ y-0 = -1(x-1)						
		<i>x</i> -	+y-1=1	` '			
16(b) (i)	$v = \frac{dx}{dt}$		·				1 Mark: Correct answer.
	$x = \int v dt = \int_{0}^{1} v dt$						
	Since v is in km/h, the time needs to be converted from						
	minutes to hours.						
16(b)					T		2 Marks:
(ii)	Time (h)	0	<u>I</u>	30	20	15	Correct answer.
	Speed (km/h)	0	24	35	28	50	1 Mark: Uses
	$f^3 \sim h_f$	Simpson's rule.					
	$\int_1^3 f(x)dx \approx \frac{h}{3} [y_0]$						
	$=\frac{\frac{1}{60}}{3}[0+50+4(24)]$						
	=1.82222222						
	≈1.82km						
16(c)	$16y = x^2 - 4x - 12$						2 Marks: Correct answer.
(i)	$x^2 - 4x = 16y + 12$						1 Mark:
	$(x-2)^2 - 4 = 16y + 12$ $(x-2)^2 = 16(y+1)$						Completes the square or shows some
	$(x-2)^2 = 4 \times 4 \times (y+1)$						understanding.
	Vertex is (2,-1)						
16(c)	The parabola is in the form $(x-a)^2 = 4a(y-k)$ (Concave up)					1 Mark: Correct	
(ii)	Focal length is 4 and the focus is (2,3)						answer.
16(c)	Directrix is 4 units below the vertex					1 Mark: Correct	
(iii)	y = -5						answer.

16(d)	$V = \pi r^2 h$	1 Mark: Correct
(i)	' ··· · · · · · · · · · · · · · · · ·	answer.
	$200 = \pi r^2 \times h$	answer.
	$h = \frac{200}{\pi r^2}$	
	$n = \frac{1}{\pi r^2}$	
16(d)	$SA = 2\pi r^2 + 2\pi rh$	2 Marks:
(ii)		Correct answer.
	$=2\pi r^2 + 2\pi r \times \frac{200}{\pi r^2}$	1 Mark:
İ	,	Applies the
	$=2\pi r^2 + \frac{400}{r^2}$	formula for the
	<i>r</i>	SA of a cylinder
16(d)	400	2 Marks:
(iii)	$SA = 2\pi r^2 + \frac{400}{r}$	Correct answer.
	dSA 2	
	$\frac{dSA}{dr} = 4\pi r - 400r^{-2}$	1 Mark:
	dQA	Differentiates
	Minimal SA occurs when $\frac{dSA}{dt} = 0$	the SA formula
	ur	with respect
	$4\pi r - 400r^{-2} = 0$	to r
	$4r\left(\pi - \frac{100}{r^3}\right) = 0$	
	Hence $r = 0$ (no can) or $\pi - \frac{100}{r^3} = 0$	
ļ.	$r=\sqrt[3]{\frac{100}{\pi}}$	
	=3.169202884≈3 cm	
	Check $\frac{d^2SA}{dr^2} = 4\pi + 800r^{-3}$	
	$=4\pi+\frac{800}{r^3}$	
	At $r=3$ $\frac{d^2SA}{dr^2} > 0$ and is a minima	