	ACE	Fxam	inai	tion
22 3	\sim	LAGII	III I a	いしい

2015 YEAR 12 YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- · Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Ouestions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- · Allow about 1 hour 45 minutes for this section

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ \, x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_a x$$
, $x > 0$

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 The polynomial $P(x) = x^3 + 2x + k$ has (x-2) as a factor.

What is the value of k?

- (A) -12
- (B) -10
- (C) 10
- (D) 12
- 2 How many different ways can 4 people be chosen from a group of 20 people?
 - (A) 4,845
 - (B) 160,000
 - (C) 116,280
 - (D) 240,000
- 3 A stone is thrown at an angle of α to the horizontal. The position of the stone at time t seconds is given by $x = Vt \cos \alpha$ and $y = Vt \sin \alpha \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity and v m/s is the initial velocity of projection.

 What is the maximum height reached by the stone?
 - (A) $\frac{V \sin \alpha}{g}$
 - (B) $\frac{g \sin \alpha}{V}$
 - (C) $\frac{V^2 \sin^2 \alpha}{2g}$
 - (D) $\frac{g\sin^2\alpha}{2V^2}$

4 The functions y = x and $y = x^3$ meet at the point (1,1).

What is the acute angle between the tangents to these functions at this point?

- (A) 10°
- (B) 27°
- (C) 45°
- (D) 63°
- 5 What is $\frac{d}{dx} \left(x \cos^{-1} x \sqrt{1 x^2} \right) ?$
 - (A) $\frac{-2}{\sqrt{1-x^2}}$
 - (B) $\frac{-1}{\sqrt{1-x^2}}$
 - (C) $\cos^{-1} x$
 - (D) $\sin^{-1} x$
- 6 The acceleration of a particle is defined in terms of its position by the equation a = 2x + 4. If v = 5 when x = 2, what is the velocity when x = 4?
 - (A) 5 ms⁻¹
 - (B) 7 ms⁻¹
 - (C) $\sqrt{65} \text{ ms}^{-1}$
 - (D) $\sqrt{95} \text{ ms}^{-1}$
- What is the domain and range of $y = 2\cos^{-1}(x-1)$?
 - (A) Domain: $0 \le x \le 2$. Range: $0 \le y \le \pi$
 - (B) Domain: $-1 \le x \le 1$. Range: $0 \le y \le \pi$
 - (C) Domain: $0 \le x \le 2$. Range: $0 \le y \le 2\pi$
 - (D) Domain: $-1 \le x \le 1$. Range: $0 \le y \le 2\pi$
- 8 What is the value of $\int_{\epsilon}^{\epsilon^2} \frac{1}{x \log x} dx$? Use the substitution $u = \log_{\epsilon} x$.
 - (A) $\log_e 0.5$
 - (B) log_e 2
 - (C) log_e 4
 - (D) 1

- 9 At a checkpoint 6% of the vehicles are trucks. A random sample of 30 vehicles is photographed passing through the checkpoint. What is the probability that three of the 30 vehicles will be trucks?
 - (A) 0.100
 - (B) 0.165
 - (C) 0.195
 - (D) 0.216
- 10 What is the solution to the inequality $\frac{3}{x(2x-1)} \ge 1$?
 - (A) $x \le -1$, $0 < x < \frac{1}{2}$ and $x \ge \frac{3}{2}$
 - (B) $-1 \le x < 0 \text{ and } \frac{1}{2} < x \le \frac{3}{2}$
 - (C) $-\frac{3}{2} \le x \le -\frac{1}{2}$ and $0 < x \le 1$
 - (D) $x \le -\frac{3}{2}, -\frac{1}{2} \le x < 0 \text{ and } x \ge 1$

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Que	estion !	11 (15 marks)	Marks
(a)	Find	the exact value of $\int_{-1}^{1} \sqrt{4-x^2} dx$, using the substitution $x = 2\sin\theta$.	3
(b)		one application of Newton's method with an initial approximation of to find the next approximation to the root of the equation $\log_e x - \frac{1}{x}$.	2
(c)	Inac	class of 27 students, there are 14 boys and 13 girls.	
	(i)	The class elects a captain and a vice captain. In how many ways is this possible?	1
	(ii)	The class needs to elect two boys and two girls for the student council. How many different representatives are possible?	2
	(iii)	The class elected Henry and Olivia for the student council. How many different representatives are now possible?	1
(d)	The p	polynomial $P(x) = x^3 + bx^2 + cx + d$ has roots 0, 3 and -3.	
	(i)	What are the values of b , c and d ?	2
	(ii)	Without using calculus, sketch the graph of $y = P(x)$.	1
	(iii)	Hence or otherwise, solve the inequality $\frac{x^2-9}{x} > 0$	1
(e)		function $f(x)$ is given by $f(x) = 4 \tan^{-1} x$. Find the slope of the tangent curve where the function $y = f(x)$ cuts the y-axis.	2

Question 12 (15 marks)

Marks

2

2

1

2

- (a) The point C(-3,8) divides the interval AB externally in the ratio k:1. Find the value of k if A is the point (6,-4) and B is the point (0,4).
- Find the value of k if A is the point (6,-4) and B is the point (0,4).
- (b) The point $P(2ap, ap^2)$ is on the parabola $x^2 = 4ay$. The normal at P cuts the x-axis at S and the y-axis at T.
 - (i) Prove that the equation of the normal to the parabola at P is given by $x + py = 2ap + ap^3$.
 - (ii) Hence show that S is the point $(ap(2+p^2), 0)$ and that T is the point $(0, a(2+p^2))$.
 - (iii) Find the values of p such that P is the midpoint of ST.
- (c) Use the substitution $x = u^2 + 1$ to evaluate $\int_2^{10} \frac{x}{\sqrt{x-1}} dx$.
- (d) (i) Show that $\sin(x + \frac{\pi}{4}) = \frac{\sin x + \cos x}{\sqrt{2}}$
 - (ii) Hence or otherwise, solve $\frac{\sin x + \cos x}{\sqrt{2}} = \frac{\sqrt{3}}{2}$ for $0 \le x \le 2\pi$.
- (e) After time t years the number N of animals in a national park decreases according to the equation:

$$\frac{dN}{dt} = -0.09(N - 100)$$

The initial number of animals in the national park is 500.

- (i) Verify that $N = 100 + Ae^{-0.69t}$ is a solution of the above equation, where A is a constant.
- ii) After one year the number of animals in the natural park is 400.

 Find the time taken for the number of animals to reach 200. Answer correct to three significant figures.

Question 13 (15 marks)

Marks

3

2

1

- (a) Use mathematical induction to prove that $3^n 2n 1$ is divisible by 4 for all positive integers greater than 1.
- (b) Two circles are intersecting at P and Q. The diameter of one circle is PR.

Copy this diagram into your writing booklet.

- (i) Draw a straight line through P, parallel to QR to meet the second circle at S. Prove that QS is a diameter of the second circle.
- Prove that the circles have equal radii if TQ is parallel to PR.
- (c) Solve the equation (n+2)! = 72n!
- (d) James plays a game where three regular, six-sided dice are thrown once.
 - (i) What is the probability that all three dice show a 6?
 - (ii) What is the probability that exactly two of the dice show a 6?
 - (iii) What is the probability that exactly two of the dice show the same number?
- (e) A rock is projected horizontally from the top of a 25 metre high cliff. The rock is thrown with an initial velocity of 40 ms⁻¹. Assume $g = 10 \text{ ms}^{-1}$.
 - (i) Determine the parametric equations of the path.

 Take the origin at the base of the cliff.
 - (ii) How far from the base of the cliff does the rock hit the sea?

Que	estion 1	14 (15 marks)	Marks
(a)	Find	the term independent of x in the expansion of $(x^2 - \frac{2}{x})^9$.	2
(b)	where	velocity of a particle moving in a straight line is given by $v = 10 - x$ e x metres is the distance from fixed point O and v is the velocity in experiences per second. Initially the particle is at O.	
	(i)	Let a be the acceleration in metres per second squared. Find an expression for a in terms of x .	1
	(ii)	Show that $x = 10 - 10e^{-t}$ by integration.	3
	(iii)	What is the limiting position of the particle?	1
(c)	Its dia	ticle moves in a straight line under simple harmonic motion. splacement (x metres) from a fixed point O at any time (t seconds) is by: $x = 4\cos^2 t - 1$.	
	(i)	Find a expression for acceleration in terms of x .	2
	(ii)	Sketch $x = 4\cos^2 t - 1$ for $0 \le t \le \pi$. Clearly show the times when the particle passes through O .	2
	(iii)	Find the time when the velocity of the particle is increasing most rapidly for $0 \le t \le \pi$.	1
(d)	(i)	Expand $(1-x)^{2n}$ using the binomial theorem.	1
	(ii)	Hence prove the following identity.	2
		$^{2n}C_1 + 3^{2n}C_3 + + (2n-1)^{2n}C_{2n-1} = 2^{2n}C_2 + 4^{2n}C_4 + + 2n^{2n}C_{2n}$	

End of paper

ACE Examination 2015

HSC Mathematics Extension 1 Yearly Examination

Worked solutions and marking guidelines

Section I			
	Solution	Criteria	
1	$P(x) = x^{3} + 2x + k$ $P(2) = 2^{3} + 2 \times 2 + k = 0 (x - 2 \text{ is a factor of } P(x))$ $8 + 4 + k = 0$ $k = -12$	1 Mark: A	
2	²⁰ C ₄ = 4,845	1 Mark: A	
3	$y = Vt \sin \alpha - \frac{1}{2}gt^{2}$ $\dot{y} = V \sin \alpha - gt$ Maximum height when $\dot{y} = 0$ $0 = V \sin \alpha - gt$ $t = \frac{V \sin \alpha}{g}$ Maximum height $h = V \sin \alpha \times \frac{V \sin \alpha}{g} - \frac{1}{2}g \times \left(\frac{V \sin \alpha}{g}\right)^{2}$ $= \frac{V^{2} \sin^{2} \alpha}{2g}$	1 Mark: C	
4	$y = x$ $m_{1} = 1$ $\tan \theta = \left \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right $ $= \left \frac{1 - 3}{1 + 1 \times 3} \right $ $= \frac{2}{4} = \frac{1}{2}$ $\theta = 26.56505118 \approx 27^{\circ}$	I Mark: B	
5	$\frac{d}{dx}\left(x\cos^{-1}x - \sqrt{1 - x^2}\right) = x \times \frac{-1}{\sqrt{1 - x^2}} + \cos^{-1}x - \frac{1}{2\sqrt{1 - x^2}} \times -2x$ $= \cos^{-1}x$	1 Mark: C	

6	$a = 2x + 4$ $v^{2} = 2\int (2x + 4) dx$ $= 2x^{2} + 8x + c$ When $x = 2$, $v = 5$ then $c = 1$ $v^{2} = 2x^{2} + 8x + 1$ $v = \sqrt{2x^{2} + 8x + 1}$ (conditions indicate positive solution) When $x = 4$ $v = \sqrt{2 \times 4^{2} + 8 \times 4 + 1}$ $= \sqrt{65}$	1 Mark: C
7	Domain: $-1 \le (x-1) \le 1$ or $0 \le x \le 2$. Range: $0 \le \cos^{-1}(x-1) \le \pi$ or $0 \le y \le 2\pi$	1 Mark: C
8	$u = \log_e x \text{ and } du = \frac{1}{x} dx \qquad u = \log_e e = 1 \qquad u = \log_e e^2 = 2$ $\int_e^{e^2} \frac{1}{x \log x} dx = \int_1^2 \frac{1}{u} du$ $= \left[\log_e u\right]_1^2$ $= \log_e 2 - \log_e 1$ $= \log_e 2$	1 Mark: B
9	P(3 heavy) = ${}^{30}C_3(0.94)^{27}(0.06)^3$ = 0.164980 ≈ 0.165	1 Mark: B
10	$\frac{3}{x(2x-1)} \ge 1 \qquad x \ne 0 \text{ or } x \ne \frac{1}{2}$ $x^{2}(2x-1)^{2} \times \frac{3}{x(2x-1)} \ge 1 \times x^{2}(2x-1)^{2}$ $3x(2x-1) \ge x^{2}(2x-1)^{2} \qquad x \ne 0 \text{ and } x \ne 2$ $3x(2x-1) - x^{2}(2x-1)^{2} \ge 0$ $x(2x-1)[3-x(2x-1)] \ge 0$ $x(2x-1)(2x^{2}-x-3)] \le 0$ $x(2x-1)(2x-3)(x+1) \le 0$ Critical points are -1 , 0 , $\frac{1}{2}$ and $\frac{3}{2}$ Test values in each region $-1 \le x < 0 \text{ and } \frac{1}{2} < x \le \frac{3}{2}$	1 Mark: B

Section	n Π	
	Solution	Criteria
11(a)	$x = 2\sin\theta$, $\frac{dx}{d\theta} = 2\cos\theta$, $dx = 2\cos\theta d\theta$	3 Marks: Correct answer.
	When $x = 1$ $1 = 2\sin\theta$, $\sin\theta = \frac{1}{2}$ or $\theta = \frac{\pi}{6}$ When $x = -1$ $-1 = 2\sin\theta$, $\sin\theta = -\frac{1}{2}$ or $\theta = -\frac{\pi}{6}$	2 Marks: Uses the substitution and simplifies the integral.
	$\int_{-1}^{1} \sqrt{4 - x^2} dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{4 - 4\sin^2\theta} \times 2\cos\theta d\theta$ $= 4 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2\theta d\theta$ $= 8 \left[\frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta \right) \right]_{0}^{\frac{\pi}{4}} = \frac{2\pi}{3} + \sqrt{3}$	I Mark: Adjusts the limits and finds dx.
11(b)	$f(x) = \log_e x - x^{-1}$ $f'(x) = \frac{1}{x} + \frac{1}{x^2}$	2 Marks: Correct answer.
	$f(1) = \log_e 1 - \frac{1}{1} = -1$ $f'(1) = \frac{1}{1} + \frac{1}{1^2} = 2$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1 - \left(\frac{-1}{2}\right) = 1.5$	1 Mark: Finds $f(1)$, $f'(1)$ or shows some understanding of Newton's method.
11(c) (i)	Order is important. (Select the captain then vice-captain) $^{27}P_2 = 702$	1 Mark: Correct answer.
11(c) (ii)	Order is not important $^{14}C_2 \times ^{13}C_2 = 91 \times 78$ $= 7098$	2 Marks: Correct answer. 1 Mark: Shows understanding
11(c) (iii)	Order is not important $^{13}C_1 \times ^{12}C_1 = 13 \times 12$ $= 156$	1 Mark: Correct answer.
11(d) (i)	$P(x) = x^{3} + bx^{2} + cx + d$ $P(0) = 0^{3} + b \times 0^{2} + c \times 0 + d = 0, \therefore d = 0$	2 Marks: Correct answer.
	$P(3) = 3^{3} + b \times 3^{2} + c \times 3 = 0, \therefore 27 + 9b + 3c = 0$ $P(-3) = (-3)^{3} + b \times (-3)^{2} + c \times (-3) = 0, \therefore -27 + 9b - 3c = 0$ By inspection $b = 0$ and $c = -9$ Therefore $b = 0$, $c = -9$ and $d = 0$	1 Mark: Uses the factor theorem or shows some understanding.

11(d) $x^2 \times \left(\frac{x^2 - 9}{x}\right) > 0 \times x^2$ $x(x^2 - 9) > 0$ From the graph the solution is $-3 < x < 0$ or $x > 3$ 11(e) $f(x) = 4 \tan^{-1} x$ $f'(x) = \frac{4}{1 + x^2}$ The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1 + 0^2} = 4$ Slope of the tangent is 4. 12(a) $x = \frac{mx_y + nx_1}{m + n}$ or $y = \frac{my_2 + ny_1}{m + n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k + 1}$ $-3(k + 1) = 6$ $k = -3$ 12(b) $x = \frac{mx_2 + nx_1}{k + 1}$ $x = \frac{x \times 0 + 1 \times 6}{k + 1}$ $x = \frac{x \times 0 + 1 \times 4}{k + 1}$ $x = x \times 0 + 1 $	11(d) (ii)	$y = x^3 - 9x = x(x^2 - 9)$	1 Mark: Correct
(iii) $x^2 \times \left(\frac{x-y}{x}\right) > 0 \times x^2$ answer. $x(x^2-9) > 0$ From the graph the solution is $-3 < x < 0$ or $x > 3$ $11(e) f(x) = 4 \tan^{-1} x$ $f'(x) = \frac{4}{1+x^2}$ The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^2} = 4$ Slope of the tangent is 4. $12(a) x = \frac{mx_2 + nx_1}{m+n} \text{or} y = \frac{my_2 + ny_1}{m+n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k+1} 8 = \frac{k \times 4 + 1 \times -4}{k+1}$ $-3(k+1) = 6 8(k+1) = 4k - 4$ $k = -3$ $12(b) (i) y x^2 = 4xy$ $1 \text{Mark: Uses the ratio formula with one correct value.}$ $1 \text{Mark: Finds the gradient of the tangent or shows some understanding}$		-4 3 -2 -1 1 2 8 4	
From the graph the solution is $-3 < x < 0$ or $x > 3$ $11(e) f(x) = 4 \tan^{-1} x$ $f'(x) = \frac{4}{1+x^2}$ The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^2} = 4$ Slope of the tangent is 4. $12(a) x = \frac{mx_2 + nx_1}{m+n} \text{or} y = \frac{my_2 + ny_1}{m+n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k+1} 8 = \frac{k \times 4 + 1 \times -4}{k+1}$ $-3(k+1) = 6 8(k+1) = 4k - 4$ $k = -3 k = -3$ $12(b) (i) y x^2 = 4\pi y$ 2Marks: Correct answer. $1 \text{Mark: Uses the ratio formula with one correct value.}$ $2 \text{Mark: Correct answer.}$ $1 \text{Mark: Uses the ratio formula with one correct value.}$ $2 \text{Mark: Correct answer.}$ $1 \text{Mark: Differentiates the inverse function.}$ $2 \text{Mark: Correct answer.}$ $1 \text{Mark: Uses the ratio formula with one correct value.}$ $1 \text{Mark: Finds the gradient of the tangent or shows some understanding}$		$x^2 \times \left(\frac{x^2 - 9}{x^2}\right) > 0 \times x^2$	
11(e) $f(x) = 4 \tan^{-1} x$ $f'(x) = \frac{4}{1+x^2}$ The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^2} = 4$ Slope of the tangent is 4. 12(a) $x = \frac{mx_2 + nx_1}{m+n}$ or $y = \frac{my_2 + ny_1}{m+n}$ 2 Marks: Correct answer. 1 Mark: Uses the ratio formula with one correct value. 12(b) (i) y $x^2 = 4\pi y$ 1 Mark: Differentiates the inverse function. 2 Marks: Correct answer. 1 Mark: Uses the ratio formula with one correct value. 2 Marks: Correct answer. 1 Mark: Uses the ratio formula with one correct value. 2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent or shows some understanding			
The curve cuts the y-axis when $x = 0$ $f'(x) = \frac{4}{1+x^2}$ The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^2} = 4$ Slope of the tangent is 4. $12(a)$ $x = \frac{mx_2 + nx_1}{m+n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k+1}$ $-3(k+1) = 6$ $k = -3$ $12(b)$ (i) $x = \frac{mx_2 + nx_1}{m+n}$ $-3(k+1) = 6$ $k = -3$ $3(k+1) = 4k - 4$ $4(k+1) = 4k - $		From the graph the solution is $-3 < x < 0$ or $x > 3$	
The curve cuts the y-axis when $x = 0$ $f'(0) = \frac{4}{1+0^2} = 4$ Slope of the tangent is 4. $12(a)$ $x = \frac{mx_2 + nx_1}{m+n} \text{or} y = \frac{my_2 + ny_1}{m+n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k+1} 8 = \frac{k \times 4 + 1 \times -4}{k+1}$ $-3(k+1) = 6 8(k+1) = 4k - 4$ $k = -3$ $1 \text{ Mark: Differentiates the inverse function.}$ $2 \text{ Marks: Correct answer.}$ $1 \text{ Mark: Uses the ratio formula with one correct value.}$ $12(b)$ (i) $x^2 = 4\pi y$ $x^$	11(e)		1 ' ' '
Slope of the tangent is 4. $x = \frac{mx_2 + nx_1}{m + n} \qquad \text{or} \qquad y = \frac{my_2 + ny_1}{m + n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k + 1} \qquad 8 = \frac{k \times 4 + 1 \times -4}{k + 1}$ $-3(k + 1) = 6 \qquad 8(k + 1) = 4k - 4$ (i) $x = \frac{mx_2 + nx_1}{m + n} \qquad 2 \text{ Marks: Correct answer.}$ $x = \frac{k \times 0 + 1 \times 6}{k + 1} \qquad 8(k + 1) = 4k - 4$ $x = -3 \qquad k = -3$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 2 \text{ Marks: Correct answer.}$ $x = -3 \qquad x = -3$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Uses the ratio formula with one correct value.}$ $x = \frac{k \times 4 + 1 \times -4}{k + 1} \qquad 1 \text{ Mark: Finds the gradient of the tangent or shows some understanding}$		113	1 Mark:
Slope of the tangent is 4. $x = \frac{mx_2 + nx_1}{m + n} \qquad \text{or} \qquad y = \frac{my_2 + ny_1}{m + n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k + 1} \qquad 8 = \frac{k \times 4 + 1 \times -4}{k + 1}$ $-3(k + 1) = 6 \qquad 8(k + 1) = 4k - 4 \qquad \text{formula with one correct value.}$ $12(b) \qquad y \qquad x^2 = 4\pi$ $12(b) \qquad (i) \qquad y \qquad x^3 = 4\pi$ $12(b) \qquad (i) \qquad x^4 = 4\pi$ $12(b) \qquad (i) \qquad x^4 = 4\pi$ $12(b) \qquad (i) \qquad x^4 = 4\pi$ $13(b) \qquad (i) \qquad (i$		·	the inverse
$x = \frac{m}{m+n} \qquad \text{or} \qquad y = \frac{y-y-1}{m+n}$ $-3 = \frac{k \times 0 + 1 \times 6}{k+1} \qquad 8 = \frac{k \times 4 + 1 \times -4}{k+1}$ $-3(k+1) = 6 \qquad 8(k+1) = 4k - 4 \qquad \text{formula with one correct value.}$ $12(b) \qquad y \qquad 2 \text{ Marks:}$ $(i) \qquad y \qquad 2 \text{ Marks:}$ $(i) \qquad x^2 = 4xy \qquad 1 \text{ Mark: Finds the gradient of the tangent or shows some understanding}$			Tilletion.
-3(k+1) = 6 $k = -3$ $8(k+1) = 4k - 4$ one correct value. 2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent or shows some understanding	12(a)	$x = \frac{mx_2 + nx_1}{m + n} \qquad \text{or} \qquad y = \frac{my_2 + ny_1}{m + n}$	Correct answer.
-3(k+1) = 6 $k = -3$ $8(k+1) = 4k - 4$ one correct value. 2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent or shows some understanding		$-3 = \frac{k \times 0 + 1 \times 6}{k+1} \qquad 8 = \frac{k \times 4 + 1 \times -4}{k+1}$	the ratio
12(b) (i) 2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent or shows some understanding	 	-3(k+1) = 6 8(k+1) = 4k-4	one correct
(i) $x^2 = 4\pi y$ Correct answer. 1 Mark: Finds the gradient of the tangent or shows some understanding		, ,	
the gradient of the tangent or shows some understanding		y x² = 4.5y/	
		\$ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	the gradient of the tangent or shows some understanding
]

	To find the gradient of the normal	
ĺ	$y = \frac{1}{4a}x^2 \text{ and } \frac{dy}{dx} = \frac{1}{2a}x$	
	Gradient of the tangent at $P(2ap, ap^2) \frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$,	
	Gradient of normal at $P(2ap, ap^2)$ $m = -\frac{1}{p} (m_1 m_2 = -1)$	
	Equation of the normal at $P(2ap, ap^2)$	
	$y - y_1 = m(x - x_1)$	
	$y - ap^2 = -\frac{1}{p}(x - 2ap)$	
	$py - ap^3 = -x + 2ap$	
	$x + py = 2ap + ap^3$	
12(b)	S is on the x-axis $(y=0)$ T is on the y-axis $(x=0)$	
(ii)	$x + p \times 0 = 2ap + ap^3 \qquad 0 + py = 2ap + ap^3$	answer.
	$x = ap(2+p^2)$ $y = a(2+p^2)$	
	S is the point $(ap(2+p^2),0)$ T is the point $(0,a(2+p^2))$	
12(b)	P is the midpoint of ST	1 Mark: Correct
(iii)	$x = \frac{x_1 + x_2}{2}$ or $y = \frac{y_1 + y_2}{2}$	answer.
	$2ap = \frac{ap(2+p^2)+0}{2} \qquad ap^2 = \frac{0+a(2+p^2)}{2}$	
	$4ap = 2ap + ap^3 \qquad \qquad 2ap^2 = 2a + ap^2$	
	$ap(p^2-2)=0$ $a(p^2-2)=0$	
	$p=0, p=\pm\sqrt{2}$ $\therefore p=\pm\sqrt{2}$	
	$\therefore p = \pm \sqrt{2}$	
12(c)	$x=u^2+1$ or $u=\sqrt{x-1}$ when $x=10$ then $u=3$	2 Marks:
	$\frac{dx}{du} = 2u \text{ or } dx = 2udu$ $x = 2 \text{ then } u = 1$	Correct answer.
	$\int_{2}^{10} \frac{x}{\sqrt{x-1}} dx = \int_{1}^{3} \frac{(u^{2}+1) \times 2u}{u} du$	1 Mark: Sets up the integration using the
	$=\int_1^3 2u^2 + 2du$	substitution
	$= \left[\frac{2}{3}u^3 + 2u\right]^3$	
	$= \left(\frac{2}{3} \times 27 + 6\right) - \left(\frac{2}{3} + 2\right) = \frac{64}{3} = 21\frac{1}{3}$	

12(d) (i)	$LHS = \sin(x + \frac{\pi}{4})$	2 Marks: Correct answer.
	$= \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$ $= \sin x \times \frac{1}{\sqrt{2}} + \cos x \times \frac{1}{\sqrt{2}}$ $= \frac{\sin x + \cos x}{\sqrt{2}}$ $= RHS$	1 Mark: Uses the sum of angles formula or exact values.
12(d) (ii)	$\sin(x + \frac{\pi}{4}) = \frac{\sqrt{3}}{2}$ $x + \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$ $x = \frac{\pi}{12} \text{ or } \frac{5\pi}{12}$	2 Marks: Correct answer. 1 Mark: Finds one solution or shows some understanding.
12(e) (i)	$N = 100 + Ae^{-0.09t}$ $\frac{dN}{dt} = -0.09 \times Ae^{-0.09t}$ $= -0.09(N - 100)$	1 Mark: Correct answer.
12(e) (ii)	When $t = 1$ then $N = 400$ $400 = 100 + Ae^{-0.09x1}$ $Ae^{-0.09x1} = 300$	2 Marks: Correct answer.
	$A = \frac{300}{e^{-0.09}} = 328.252285$ We need to find t when $N = 200$ $200 = 100 + 328.25e^{-0.09t}$ $e^{-0.09t} = \frac{100}{328.25} = 0.3046$ $t = \frac{\log_e 0.3064}{-0.09}$ $= 13.206803$ $\approx 13.2 \text{ years}$	1 Mark: Finds the value of A or shows similar understanding of the problem.

13(a)	Step 1: To prove the statement true for $n=2$	3 Marks:
1000	Step 1: To prove the statement true for $n-2$ $3^n-2n-1=3^2-2\times 2-1=4$	Correct answer.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Result is true for $n=2$	
	Step 2: Assume the result true for $n=k$	2 Marks:
	$3^{1}-2k-1=4P (1) where P is an integer.$	Proves the result true for
	To prove the result is true for $n=k+1$	n=2 and
	$3^{k+1}-2(k+1)-1=4Q$ where Q is an integer.	attempts to use
	, , – – –	the result of
	LHS = $3^{k+1} - 2(k+1) - 1$	n=k to prove the result for
	$=3\times3^{k}-2k-2-1$	n=k+1.
	$=3\times(3^k-2k-1)+4k$	
	=3(4P)+4k from (1)	
	=4(3P+k)	1 Mark: Proves
	= 4 <i>Q</i>	the result true
	= RHS	for $n=2$.
	Q is an integer as P and k are integers.	
	Result is true for $n=k+1$ if true for $n=k$	
	Step 3: Result true by principle of mathematical induction.	
13(b) (i)	$ZPQR = 90^{\circ}$ (angle in a semicircle is 90°) $\angle SPQ + \angle PQR = 180^{\circ}$ (cointerior angles, $PS//QR$) $\therefore \angle SPQ = 90^{\circ}$ QS is a diameter ($\angle SPQ$ is an angle in a semicircle equal to 90°)	2 Marks: Correct answer. 1 Mark: States the angle in a semicircle is 90° or makes some progress towards the solution.
13(b) (ii)	$\angle PQR = \angle TPQ = 90^\circ$ (alternate angles are equal, $PS//QR$) QT is a diameter ($\angle TPQ$ is an angle in a semicircle equal to 90°) If $TQ//PR$ then $PRQT$ is a parallelogram. $PR = QT$ (opposite sides of a parallelogram are equal) QT and PR are equal diameters. Therefore the two circles have equal radii.	2 Marks: Correct answer. 1 Mark: Shows some understanding.

1106	,	
13(c)	(n+2)! = 72n!	2 Marks:
	(n+2)(n+1)n! = 72n!	Correct answer.
	$n^2 + 3n + 2 = 72$	1 Mark: Makes
	$n^2 + 3n - 70 = 0$	some progress
	(n-7)(n+10) = 0	towards the
	$\therefore n = 7 \ (n \ge 0)$	solution.
13(d) (i)	$P(666) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216}$	1 Mark: Correct answer.
13(d)	P(E) = P(66X) + P(6X6) + P(X66)	1 Mark: Correct
(ii)	$=3\times\left(\frac{1}{6}\times\frac{1}{6}\times\frac{5}{6}\right)$	answer.
	$=\frac{5}{72}$	
13(d) (iii)	Probability that exactly two of the dice show a 6 is the same as exactly two of the dice show a 5,	1 Mark: Correct answer.
	$P(E) = 6 \times \frac{5}{72} = \frac{5}{12}$	
13(e)	Horizontal $\ddot{x} = 0$	2 Marks:
(i)	$\dot{x} = V \cos \theta$	Correct answer.
	When $t=0$, $V=40$, $\theta=0$ implies $V\cos\theta=40$	1 Mark: Finds
	$\dot{x} = 40$	horizontal or
	x = 40t + C	vertical
	When $t=0$, $x=0$ implies $C=0$	parametric equations or
	$x = 40t$ Vertical $\ddot{y} = -10$	shows some
	$\dot{v} = -10t + V \sin \theta$	understanding
	When $t = 0$, $V = 0$, $\theta = 0$ implies $V \sin \theta = 0$	of the problem.
	$\dot{\mathbf{v}} = -10t$	
	$y = -5t^2 + C$	
	When $t=0$, $y=25$ implies $C=25$	- }
	$y = -5t^2 + 25$	1
12/->		156.1.0
13(e) (ii)	Particle reaches the sea when $y=0$	1 Mark: Correct answer.
\ \ 7	$0 = -5t^2 + 25 \text{ or } t = \sqrt{5} (t > 0)$	
	Horizontal distance from the base of the cliff.	
	x = 40t	
	$=40\sqrt{5}$ m	

14(a)	$T_{r+1} = {}^{9}C_{r}(x^{2})^{9-r} \left(-\frac{2}{x}\right)^{r}$	2 Marks: Соггесt answer.
	$= {}^{9}C_{r}x^{18-2r}(-2)^{r}x^{-r}$ $= {}^{9}C_{r}(-2)^{r}x^{18-3r}$	1 Mark: Correctly uses the general
	Term independent of x 18-3r=0	term.
	r=6	
	$T_7 = {}^9C_6(-2)^6x^{18-3.6}$	
	$= {}^{9}C_{6}(-2)^{6}$	
	=5376	
14(b)	v = 10 - x	1 Mark: Correct
(i)	$v^2 = 100 - 20x + x^2$	answer,
	$\frac{1}{2}v^2 = 50 - 10x + \frac{1}{2}x^2$	
	$a = \frac{d}{dx} \left(50 - 10x + \frac{1}{2}x^2 \right)$	
	=x-10	
14(b) (ii)	$\frac{dx}{dt} = 10 - x$	3 Marks: Correct answer.
	$\left \frac{dt}{dx} = \frac{1}{10-x} \right $	2 Marks: Finds
	$\begin{cases} dx & 10-x \\ t = -\log_{\alpha}(10-x) + C \end{cases}$	the constant or
	Initially $t = 0$ and $x = 0$	makes
	$0 = -\log_{e}(10 - 0) + C \text{ or } C = \log_{e} 10$	significant progress.
	$t = -\log_e(10 - x) + \log_e 10$	
	$=\log_e\left(\frac{10}{10-x}\right)$	1 Mark: Finds t in terms of x .
	$e' = \frac{10}{10 - x}$	
	$e^{-t} = \frac{10 - x}{10}$	
	$\begin{vmatrix} 10 \\ x = 10 - 10e^{-t} \end{vmatrix}$	
14(b)	$\lim_{t \to 0} (10 - 10e^{-t}) = 10 - 10 \times 0$	1 Mark: Correct
(iii)	t→∞	answer.
	=10 metres to the right	
1	I .	ľ

14(c)	$r = 4\cos^2 t - 1$	2 Marks:
(i) (Correct answer.
	$x = 2(\cos 2t + 1) - 1$	
	$=2\cos 2t+1$	1 Mark: Shows
	$\dot{x} = -4\sin 2t$	some
1	$\ddot{x} = -4 \times 2 \cos 2t$	understanding.
	=-4(x-1)	
14(c) (ii)	$x = 4\cos^2 t - 1 \text{ or } x = 2\cos 2t + 1$	2 Marks: Correct answer.
	Stationary points $\dot{x} = 0$, $\therefore -4\sin 2t = 0$ or $t = 0, \frac{\pi}{2}, \pi, \dots$	
	When $t=0$ $x=2\cos 2\times 0+1=3$	1 Mark: Correct
	When $t = \pi$ $x = 2\cos 2 \times \pi + 1 = 3$	shape of the
•		curve or shows
	When $t = \frac{\pi}{2} x = 2\cos 2 \times \frac{\pi}{2} + 1 = -1$	understanding.
	x .	
Į	3 7	
	2 /	
	→	
-	$\frac{\pi}{2\pi}$	
	-14 3 3 1	
14(c)	Velocity is increasing most rapidly when \ddot{x} has the greatest	1 Mark: Correct
(iii)	positive value (or x takes the least value).	answer.
	Greatest value: $\ddot{x} = -8\cos 2t = 8$ when $t = \frac{\pi}{2}$	
	2	
	Velocity is increasing most rapidly at $\frac{\pi}{2}$ seconds.	
14(d)	$(1-x)^{2n} = 1 - {}^{2n}C_1x + {}^{2n}C_2x^2 + \dots + (-1)^{r-2n}C_2x^r \dots + {}^{2n}C_{2n}x^{2n}$	1 Mark: Correct
(i)	1 2 7 7 7 - 20	answer.
14(d)	Differentiating both sides.	2 Marks:
(ii)	$-2n(1-x)^{2n-1} = -{2n \choose 1} + 2^{2n \choose 2}x + \dots + (-1)^{r} r^{2n \choose r} x^{r-1} \dots + 2n^{2n \choose 2n} x^{2n-1}$	Correct answer.
	Substitute $x = 1$	1 Mark:
	$0 = -{^{2n}C_1} + 2^{2n}C_2 + + (-1)^r r^{2n}C_2 + 2n^{2n}C_2$	Differentiates
	1 2 1 7 7 23	both sides.
	$\therefore^{2n}C_1 + 3^{2n}C_3 + \dots + (2n-1)^{2n}C_{2n-1} = 2^{2n}C_2 + 4^{2n}C_4 + \dots + 2n^{2n}C_{2n}$	