ACE	Examination

Student Name:		
---------------	--	--

2015 YEAR 12 YEARLY EXAMINATION

Mathematics Extension 2

General Instructions

- · Reading time 5 minutes
- · Working time 3 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Ouestions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 A particle is moving in a circular path of radius r, with a constant angular speed of ω Which of the following is the correct expression for acceleration?
 - (A) $r\omega$
 - (B) ωr^2
 - (C) $r\omega^2$
 - (D) $(r\omega)^2$
- 2 What is the value of $\int_0^{t} \sec 4x \tan 4x dx$?
 - (A) $-1\frac{1}{2}$
 - (B) $-\frac{3}{8}$
 - (C) $\frac{3}{8}$
 - (D) $1\frac{1}{2}$
- What is the volume of the solid formed when the region bounded by the curves $y = 2x^3$ and $y = 2\sqrt{x}$ is rotated about the x-axis? Use the method of slicing.
 - (A) $\frac{5\pi}{14}$ cubic units
 - (B) $\frac{10\pi}{14}$ cubic units
 - (C) $\frac{5\pi}{7}$ cubic units
 - (D) $\frac{10\pi}{7}$ cubic units

4 The normal to the point $P(cp, \frac{c}{p})$ on the rectangular hyperbola $xy = c^2$ has the equation $p^3x - py + c - cp^4 = 0$. The normal cuts the hyperbola at another point $Q(cq, \frac{c}{a})$.

What is the relationship between p and q?

- (A) pq = -1
- (B) $p^2q = -1$
- (C) $p^3q = -1$
- (D) $p^4q = -1$
- 5 Which of the following is an expression for $\int \frac{1}{x^2 6x + 13} dx$?
 - (A) $\frac{1}{2} \tan^{-1} \frac{(x-3)}{4} + C$
 - (B) $\frac{1}{2} \tan^{-1} \frac{(x-3)}{2} + C$
 - (C) $\frac{1}{4} \tan^{-1} \frac{(x-3)}{4} + C$
 - (D) $\frac{1}{4} \tan^{-1} \frac{(x-3)}{2} + C$
- 6 What is the number of asymptotes on the graph of $y = \frac{2x^3}{x^2 1}$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 7 What is $(-1+i)^n$ expressed in modulus-argument form? (n is a positive integer)
 - (A) $\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$
 - (B) $\left(\sqrt{2}\right)^n \left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$
 - (C) $\left(\cos\frac{3n\pi}{4} + i\sin\frac{3n\pi}{4}\right)$
 - (D) $\left(\sqrt{2}\right)^n \left(\cos\frac{3n\pi}{4} + i\sin\frac{3n\pi}{4}\right)$
- 8 Let α , β and γ be the roots of the equation $x^3 + 2x^2 + 5 = 0$.

Which of the following polynomial equations have the roots α^2 , β^2 and γ^2 ?

- (A) $x^3 4x^2 20x 25 = 0$
- (B) $x^3 4x^2 10x 25 = 0$
- (C) $x^3 4x^2 20x 5 = 0$
- (D) $x^3 4x^2 10x 5 = 0$
- 9 What is the derivative of $\sin^{-1} x \sqrt{1 x^2}$?
 - $(A) \quad \frac{\sqrt{1+x}}{\sqrt{1-x}}$
 - (B) $\frac{\sqrt{1+x}}{1-x}$
 - (C) $\frac{1+x}{\sqrt{1-x}}$
 - (D) $\frac{1+x}{1-x}$
- 10 Points $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos\phi, b\sin\phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

The chord PQ subtends a right angle at (0,0).

Which of the following is the correct expression?

- (A) $\tan \theta \tan \phi = -\frac{b^2}{a^2}$
- (B) $\tan \theta \tan \phi = -\frac{a^2}{b^2}$
- (C) $\tan \theta \tan \phi = \frac{b^2}{a^2}$
- (D) $\tan \theta \tan \phi = \frac{a^2}{b^2}$

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Que	estion 1	1 (15 marks)	Marks
(a)	(i)	On the Argand diagram sketch the graph of $ z - (\sqrt{2} + \sqrt{2}i) = 1$.	2
	(ii)	Find possible values of $ z $ and arg z if z satisfies $ z - (\sqrt{2} + \sqrt{2}i) = 1$.	2
(b)	(i)	Find real numbers a , b and c such that	2
		$\frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} = \frac{a}{2x - 1} + \frac{bx + c}{x^2 + 1}$	
	(ii)	Hence evaluate in simplest form	2
		$\int \frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} dx$	
(c)	Use th	the substitution $x = u^2 \ (u > 0)$ to evaluate $\int \frac{1}{x(1+\sqrt{x})} dx$.	3
(d)	Let z	$z_1 = \cos \theta_1 + i \sin \theta_1$ and $z_2 = \cos \theta_2 + i \sin \theta_2$, where θ_1 and θ_2 are real.	
	(i)	Show that $\frac{1}{z_1} = \cos \theta_1 - i \sin \theta_1$.	1
	(ii)	Show that $z_1 z_2 = \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)$.	1.
(e)	Let z	$z_1 = \frac{a}{1+i}$ and $z_2 = \frac{b}{1+2i}$, where a and b are real numbers.	2

What is the value of a and b, if $z_1 + z_2 = 1$?

Question 12 (15 marks)

Marks

(a) Sketch the graph of $\arg\left(\frac{z-2}{z+2i}\right) = \frac{\pi}{2}$.

2

2

2

3

- (b) Let z=1+i be a root of the polynomial $z^2-biz+c=0$ where b and c are real numbers. Find the value of b and c.
- (c) The parabola $y=4-x^2$ is rotated about the line y=4 $\{x:0 \le x \le 2\}$ to form a solid. Use the method of slicing to find the volume of the solid.
- (d) The point P lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

- (i) Use the parametric representation of an ellipse to show that the equation of the tangent is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$.
- (ii) The tangent at P cuts the x-axis at A, y-axis at B and C is the foot of the perpendicular from P to the y-axis. Show that $OC \times OB = b^2$.
- (e) Consider the function $f(x) = x^4 4x^3$.
 - (i) Sketch the graph of y = f(x).
 - (ii) Hence or otherwise find the number of real roots of the equation $x^4 4x^3 = kx$, where k is a positive real number.

Question	13 (15 marks)
----------	---------------

Marks

1

2

(a) The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has a focus S on the positive x-axis and the corresponding directrix cuts the asymptotes to the hyperbola at the points P and Q in the first and fourth quadrants respectively.

(i) Show that PS is perpendicular to the asymptote through P. 2

Show that PS = b.

(iii) A circle with centre S touches the asymptotes of the hyperbola.

Deduce that the point of contact are the points P and Q.

(iv) The circle with centre S touches the asymptotes of the hyperbola and cuts the hyperbola at the points R and T. Show that RT is a diameter of the circle if a = b.

(b) Two light inextensible strings AB and BC each of length I are attached to a particle of mass m at B. The other ends A and C are fixed in a vertical line such that AC is also the length I. The particle describes a horizontal circle with constant angular velocity ω . T_1 and T_2 are tensions in the strings AB and BC respectively.

-) Find the tensions in the strings.
- i) What is the least value of ω in order for the strings to be taut?
- (c) Let $f(x) = \frac{x^2}{x^2 1}$. Draw separate one-third page sketches of these functions.

(i) y=|f(x)|

2

2

Que	estion	14 (15 marks)	Marks
(a)	(i)	Show that $z\overline{z} = z ^2$ for any complex number z.	1
	(ii)	A sequence of complex numbers z_n is given by the rule $z_1 = w$ and $z_n = v\overline{z}_{n-1}$ where w is a given complex number and v is a complex number with modulus 1. Show that $z_3 = w$.	2

- (b) Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$, where *n* is positive integer.
 - (i) Show that $I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$ when $n \ge 2$. (ii) Prove that $I_n = \frac{(n-1)}{n} I_{n-2}$ when $n \ge 2$. (iii) What is the value of I_4 ?
- (c) A solid is formed by rotating about the y-axis the region bounded by the curve $y = \log_e x$ and the x-axis between $1 \le x \le e$. Find the volume of this solid using the method of cylindrical shells.
- (d) Show that if $x \ne 1$ then $1 + x + x^2 + ... + x^n = \frac{x^{n+1} 1}{x 1}$ for $n \ge 1$.

Que	Question 15 (15 marks)		Marks
(a)	(i)	The polynomial $P(x)$ has a double root at $x = \alpha$. Prove that $P'(x)$ has a root at $x = \alpha$.	2
	(ii)	The polynomial $P(x) = x^5 - ax^2 + b$ has a double root at $x = \alpha$. Find the values of a and b .	2
(b)		B are on the curve $y = x^4 + 4x^3$ at $x = \alpha$ and $x = \beta$ respectively. ne $y = mx + b$ is a tangent to the curve at both points A and B.	
	(i)	The zeros of the equation $x^4 + 4x^3 - mx - b = 0$ are α, α, β and β . Explain this result.	1
	(ii)	Find the values for m and b .	3
(c)		κ is dropped under gravity (g) from rest at the top of a cliff. The air note is proportional to the velocity (v) of the rock.	
	(i)	Explain why $\frac{dv}{dt} = g - kv$.	1
	(ii)	Show that $v = \frac{g}{k}(1 - e^{-kt})$ when $t \ge 0$.	3
	(iii)	Show that $x = -\frac{1}{k}v - \frac{g}{k^2}\log_s\left(\frac{g}{g - kv}\right)$ by using $\frac{dv}{dt} = v\frac{dv}{dx}$.	3

Question 16 (15 marks)

Marks

2

- (a) Let $z = r(\cos\theta + i\sin\theta)$ where $z \neq 0$.
 - (i) Use De Moivre's theorem to show that $z^n \frac{1}{z^n} = 2i \sin n\theta$ for positive integers $n \ge 1$.
 - (ii) Expand $\left(z \frac{1}{z}\right)^5$ and show that $\sin^5 \theta = \frac{1}{16} (\sin 5\theta 5\sin 3\theta + 10\sin \theta)$ 3
- (b) Show that $(a+b+c)^2 \le 3(a^2+b^2+c^2)$.

- 2.
- (c) Tangents PA and PB are drawn to a circle. Point Q is on the minor are AB. Perpendiculars QL, QM and QN are drawn from Q to PA, AB and PB respectively.

(i) Show that $\triangle BNQ \parallel \mid \triangle AMQ$ and $\triangle ALQ \parallel \mid \triangle BMQ$.

- 3
- (ii) Hence show that QN, QM and QL form a geometric sequence.
- 2

(d) Show that $1+x+\frac{x^2e^x}{2} > e^x$ for x > 0.

3

End of paper

ACE Examination 2015

HSC Mathematics Extension 2 Yearly Examination

Worked solutions and marking guidelines

Section	ıI	
	Solution	Criteria
1 .	Acceleration for uniform circular motion. $a = r\omega^2$	1 Mark: C
2	$\int_0^{\frac{\pi}{6}} \sec 4x \tan 4x dx = \left[\frac{1}{4} \sec 4x \right]_0^{\frac{\pi}{6}}$ $= \frac{1}{4} \left[\sec \frac{2\pi}{3} - \sec 0 \right] = -1\frac{1}{2}$	1 Mark: A
3	Slices are taken perpendicular to the axis of rotation (x-axis). The base is an annulus. $A = \pi(r_2^2 - r_1^2) = \pi((2\sqrt{x})^2 - (2x^3)^2) \\ = \pi(4x - 4x^6) = 4\pi(x - x^6)$ $V = \lim_{\delta x \to 0} \sum_{x=0}^{1} 4\pi(x - x^6) \delta x$ $= \int_0^1 4\pi(x - x^6) dx = 4\pi \int_0^1 (x - x^6) dx$ $= 4\pi \left[\frac{x^2}{2} - \frac{x^7}{7} \right]_0^1 = 4\pi \left[(\frac{1}{2} - \frac{1}{7}) - 0 \right] = \frac{10\pi}{7}$	1 Mark: D
4	$Q(cq,\frac{c}{q})$ is on the normal and satisfies the equation. $p^3cq-p\frac{c}{q}+c-cp^4=0$ $p^3q^2-p+q-qp^4=0$ $p^3q(q-p)=-(q-p) \text{ or } p^3q=-1$	i Mark: C
5	$\int \frac{1}{x^2 - 6x + 13} dx = \int \frac{dx}{(x - 3)^2 + 2^2} = \frac{1}{2} \tan^{-1} \frac{(x - 3)}{2} + C$	1 Mark: B
6	$x \neq 1 \text{ or } x \neq -1$ $y = \frac{2x(x^2 - 1)}{(x^2 - 1)} + \frac{2x}{(x^2 - 1)} = 2x + \frac{2x}{(x^2 - 1)} \qquad x \to \infty \frac{2x}{(x^2 - 1)} \to 0$ As $x \to \infty$ then $y \to 2x$ $\therefore x = 1, x = -1 \text{ and } y = 2x \text{ are the asymptotes of the graph.}$	1 Mark: C

7	$\tan \theta = \frac{1}{-1} \text{ or } \theta = \frac{3\pi}{4} r^2 = x^2 + y^2 = 1^2 + 1^2 \text{ or } r = \sqrt{2}$ $-1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$ $(-1 + i)^n = \left(\sqrt{2}\right)^n \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)^n$ $= \left(\sqrt{2}\right)^n \left(\cos \frac{3n\pi}{4} + i \sin \frac{3n\pi}{4}\right)$	1 Mark: D
8	If α , β and γ are zeros of $x^3 + 2x^2 + 5 = 0$ then the polynomial equation with roots α^2 , β^2 and γ^2 is: $(\sqrt{x})^3 + 2(\sqrt{x})^2 + 5 = 0$ $(\sqrt{x})^3 = -(2x+5)$ $x^3 = 4x^2 + 20x + 25$ $x^3 - 4x^2 - 20x - 25 = 0$	1 Mark: A
9	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{2} (1 - x^2)^{\frac{1}{2}} \times -2x$ $= \frac{1}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}} = \frac{1 + x}{\sqrt{1 - x^2}}$ $= \frac{1 + x}{\sqrt{(1 + x)(1 - x)}} = \frac{\sqrt{1 + x}}{\sqrt{1 - x}}$ Result defined for $-1 \le x \le 1$	1 Mark: A
10	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $P(a\cos\theta, b\sin\theta)$ $POQ \text{ is a right-angled triangle. Therefore } OP^2 + OQ^2 = PQ^2.$ $a^2\cos^2\theta + b^2\sin^2\theta + a^2\cos^2\phi + b^2\sin^2\phi$ $= a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2$ $a^2(\cos^2\theta + \cos^2\phi) + b^2(\sin\theta - \sin\phi)^2$ $a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2$ $0 = -2a^2\cos\theta\cos\phi - 2b^2\sin\theta\sin\phi$ $2b^2\sin\theta\sin\phi = -2a^2\cos\theta\cos\phi$ $\frac{\sin\theta\sin\phi}{\cos\theta\cos\phi} = \frac{-2a^2}{2b^2} \text{ or } \tan\theta\tan\phi = -\frac{a^2}{b^2}$ Hence	1 Mark: B

Section	ıII	
	Solution	Criteria
11(a) (i)	$ z - (\sqrt{2} + \sqrt{2}i) = 1$ Represents a circle with centre $(\sqrt{2}, \sqrt{2})$ and radius of 1 unit.	2 Marks: Correct answer.
	Represents a chee will centre $(\sqrt{2},\sqrt{2})$ and facility of 1 limit.	1 Mark: Draws a circle or states the radius or centre.
11(a) (ii)	$OC = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 2$ $\therefore OE = 1 \text{ and } OD = 3 \text{ and therefore } 1 \le z \le 3$	2 Marks: Correct answer.
	$\operatorname{Arg} OC = \frac{\pi}{4}$ $\sin \angle AOC = \frac{1}{2}, \angle AOC = \frac{\pi}{6} \sin \angle BOC = \frac{1}{2}, \angle BOC = \frac{\pi}{6}$	1 Mark: Finds z or arg z or shows some understanding.
	$\frac{\pi}{4} - \frac{\pi}{6} \le \arg z \le \frac{\pi}{4} + \frac{\pi}{6} \text{ or } \frac{\pi}{12} \le \arg z \le \frac{5\pi}{12}$	
11(b) (i)	$\frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} = \frac{a}{2x - 1} + \frac{bx + c}{x^2 + 1}$	2 Marks: Correct answer.
٠,	$3x^{2}-3x+2 = a(x^{2}+1)+(bx+c)(2x-1)$ Let $x = \frac{1}{2}$ and $x = 0$ $\frac{5}{4} = a \times \frac{5}{4} \text{ or } a = 1$ Equating the coefficients of x^{2} $3 = a+2b \text{ or } b = 1$ $\therefore a = 1, b = 1 \text{ and } c = -1$	1 Mark: Makes some progress in finding a,b or c.
11(b) (ii)	$\int \frac{3x^2 - 3x + 2}{(2x - 1)(x^2 + 1)} dx = \int \left(\frac{1}{2x - 1} + \frac{x - 1}{x^2 + 1}\right) dx$	2 Marks: Correct answer.
	$= \int \left(\frac{1}{2x-1} + \frac{x}{x^2+1} - \frac{1}{x^2+1}\right) dx$ $= \frac{1}{2} \log_e 2x-1 + \frac{1}{2} \log_e x^2+1 - \tan^{-1} x + C$ $= \frac{1}{2} \log_e \left[2x-1 (x^2+1) \right] - \tan^{-1} x + C$	1 Mark: Correctly finds one of the integrals.

11(c)	Let $x = u^2$ then $\frac{dx}{du} = 2u$ or $dx = 2udu$	3 Marks:
	Let $x = u^2$ then $\frac{dx}{du} = 2u$ or $dx = 2udu$ $\int \frac{1}{x(1+\sqrt{x})} dx = \int \frac{1}{u^2(1+u)} 2udu$ $= 2\int \frac{1}{u(1+u)} du$ $= 2\int \left(\frac{1}{u} - \frac{1}{1+u}\right) dx$ $= 2\left[\log_e u - \log_e (1+u)\right]$ $= 2\log_e \left \frac{u}{1+u}\right + C$	Correct answer. 2 Marks: Finds the primitive function. 1 Mark: Sets up the integral in terms of u
	$=2\log_e\frac{\sqrt{x}}{1+\sqrt{x}}+C$	
11(d) (i)	$\frac{1}{z_1} = \left(\cos\theta_1 + i\sin\theta_1\right)^{-1}$	1 Mark: Correct answer.
	$= \cos(-\theta_1) + i \sin(-\theta_1)$ De Moivre's theorem = $\cos \theta_1 - i \sin \theta_1$	
11(d) (ii)	$z_1 z_2 = (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)$ $= \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2)$ $= \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)$	1 Mark: Correct answer.
11(e)	$\frac{a}{1+i} + \frac{b}{1+2i} = 1$	2 Marks: Correct answer.
	$\begin{vmatrix} \frac{a}{1+i} \times \frac{1-i}{1-i} + \frac{b}{1+2i} \times \frac{1-2i}{1-2i} = 1 \\ \frac{a-ia}{2} + \frac{b-2ib}{5} = 1 \\ \left(\frac{a}{2} + \frac{b}{5}\right) - i\left(\frac{a}{2} + \frac{2b}{5}\right) = 1$	1 Mark: Substitutes into $z_1 + z_2 = 1$ and uses the conjugate.
	Comparing real and imaginary parts.	
	$\frac{a}{2} + \frac{b}{5} = 1$ and $\frac{a}{2} + \frac{2b}{5} = 0$ 5a + 2b = 10 (1) $5a + 4b = 0 (2)Equation (1) – (2)-2b = 10 or b = -5Substitute b = -5 into equation (2)$	
	$5a+4\times-5=0$ or $a=4$ Therefore $a=4$ and $b=-5$.	
	Therefore $\mu = 4$ and $\nu = 5$.	1

12(a)	$\arg\left(\frac{z-2}{z+2i}\right) = \arg(z-2) - \arg(z+2i) = \frac{\pi}{2}$	2 Marks: Correct answer.
	Angle in a semicircle. y 1 $arg(z-2)$ $arg(z+2i)$ $arg(z+2i)$	1 Mark: Shows some understanding of the problem
12(b)	$z=1+i$ satisfies the polynomial $z^2-biz+c=0$	2 Marks: Correct answer.
	$(1+i)^2 - bi(1+i) + c = 0$ $1+2i-1-bi+b+c=0$ $(b+c)+(2-b)i=0$ Equating real and imaginary parts Therefore $b=2$ and $c=-2$	1 Mark: Uses the factor theorem.
12(c)	Same volume as $y = x^2$ rotated about the x-axis. Area of the slice is a circle radius is y and height x $A = \pi y^2$ $= \pi x^4$ $\delta V = \delta A \cdot \delta x$ $V = \lim_{\delta x \to 0} \sum_{x=0}^{2} \pi x^4 \delta x$ $= \int_{0}^{2} \pi x^4 dx$ $= \pi \left[\frac{1}{5} x^5 \right]_{0}^{2}$ $= \frac{\pi}{5} \times 2^5 = \frac{32\pi}{5}$ cubic units	3 Marks: Correct answer. 2 Marks: Correct integral for the volume of the solid. 1 Marks: Sets up the area of the slice

12(d)	T. S. 1d	2 Markey
(i)	To find the equation of tangent through P $y = b \sin \theta$	2 Marks: Correct answer
''	1	0 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\frac{dy}{d\theta} = b\cos\theta$	1 Mark:
	$x = a\cos\theta$ as	Correctly
	$\frac{dx}{d\theta} = -a\sin\theta$	calculates the gradient
	$dv = dv = d\theta$	Brautom
	$\begin{cases} \frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} \end{cases}$]
	$=b\cos\theta\times\frac{1}{-a\sin\theta}=\frac{-b\cos\theta}{a\sin\theta}$	•
	Walle Walle	:
	Equation of the tangent	
	$y-y_1=m(x-x_1)$	
	$y - b\sin\theta = \frac{-b\cos\theta}{a\sin\theta}(x - a\cos\theta)$	
	$ay\sin\theta - ab\sin^2\theta = -bx\cos\theta + ab\cos^2\theta$	
	$bx\cos\theta + ay\sin\theta = ab(\sin^2\theta + \cos^2\theta)$	
	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$	
12(d)	y A	2 Marks:
(ii)	В	Correct answer
]	$C = P(a\cos\theta \ b\sin\theta)$	1 Mark: Finds
İ	× x	the coordinates
	0 1	or B or C .
	At B $x = 0$ and $\frac{0}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ or $y = b\csc\theta$	
	Point B is $(0,b\csc\theta)$ and Point C is $(0,b\sin\theta)$	
	$OC \times OB = b \sin \theta \times b \csc = b^2$	
12(e)	$f(x) = x^4 - 4x^3, f'(x) = 4x^3 - 12x^2, f''(x) = 12x^2 - 24x$	3 Marks:
(i)	Stationary points $f'(x) = 0$	Correct answer.
	$4x^3 - 12x^2 = 0$ or $4x^2(x-3) = 0$ or $x = 0$ or 3	2 Marks:
1	f''(0) = 0 possible point of inflection.	Makes
	f''(3) = 36 > 0 (3, -27) is a Minima	significant
	Points of inflection $f'(x) = 0$	progress.
	$12x^2 - 24x = 0$ or $12x(x-2)$ or $x = 0$ or $x = 2$	
	$f''(0^-) > 0$ and $f''(0^+) < 0$	1 Mark: Finds
	Hence (0,0) is a point of inflection	stationary point
	$f''(2^-) < 0$ and $f''(2^+) > 0$	or shows some understanding.
	Hence (2,-16) is a point of inflection	
L	1 (-) 10) 11 Pozza oz misovion	

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12(e) (ii)	The real solution of $x^4 - 4x^3 = kx$ is given by the x values where $y = x^4 - 4x^3$ and $y = kx$ intersect. If $k > 0$ then from the graph there are 2 real roots.	1 Mark: Correct answer.
13(a) (i)	Focus $S(ae, 0)$ and at P (directrix $x = \frac{a}{e}$ and asymptote $y = \frac{b}{a}x$). At $P = \frac{a}{e}$ and $y = \frac{b}{a} \times \frac{a}{e} = \frac{b}{e}$ $\therefore P\left(\frac{a}{e}, \frac{b}{e}\right)$ Gradient $PS = \frac{\frac{b}{e}}{\frac{a}{e} - ae} = \frac{b}{a(1 - e^2)}$ Gradient $OP = \frac{b}{a}$ $\therefore m_1 m_2 = \frac{b}{a(1 - e^2)} \times \frac{b}{a} = \frac{b^2}{a^2(1 - e^2)} = \frac{b^2}{-b^2} = -1$ Hence PS is perpendicular to OP .	2 Marks: Correct answer. 1 Mark: Finds the coordinates of P or shows some understanding of the problem.
13(a) (ii)	$PS^{2} = \left(\frac{a}{e} - ae\right)^{2} + \left(\frac{b}{e}\right)^{2}$ $= \frac{1}{e^{2}} \left[a^{2} (1 - e^{2})^{2} + b^{2} \right]$ $= \frac{1}{e^{2}} \left[-b^{2} (1 - e^{2}) + b^{2} \right]$ $= \frac{1}{e^{2}} \left[b^{2} e^{2} \right]$ $PS = b$	1 Mark: Correct answer.

13(a) (iii)	Perpendicular distance from S to P is b (from parts (i) and (ii)). Tangent to a circle is perpendicular to the radius through the point of contact. Therefore P is the point of contact of a circle with centre S and radius b . Similarly, by symmetry Q is the point of contact of a circle with centre S and radius b .	1 Mark: Correct answer.
13(a) (iv)	If $a=b$ then $b^2=a^2(e^2-1)$ $b^2=b^2(e^2-1)$ $e^2=2 \text{ or } e=\sqrt{2}$ Hence $S(a\sqrt{2},0)$ Using the locus definition of a hyperbola with $SR=ST=b$ $\frac{b}{x-\frac{e}{e}}=e$ $b=e(x-\frac{e}{e})$ $x=\frac{a+b}{e}=\frac{a+a}{\sqrt{2}}=a\sqrt{2}$ Therefore, if $a=b$, R and T have the same x coordinate ($a\sqrt{2}$) as S . Hence R , S and T are collinear and RT is the diameter of the circle with centre S .	2 Marks: Correct answer. 1 Mark: Finds the eccentricity or the x- coordinate of R or T in terms of a, b and e.
13(b) (i)	Resolving the forces vertically and horizontally at B $T_{1}\cos\theta - T_{2}\cos\theta - mg = 0 \qquad T_{1}\sin\theta + T_{2}\sin\theta = mr\omega^{2}$ $\cos\theta = \frac{\frac{1}{2}l}{l} = \frac{1}{2} \qquad \sin\theta = \frac{r}{l}$ But $T_{1} \times \frac{1}{2} - T_{2} \times \frac{1}{2} - mg = 0 \qquad T_{1} \frac{r}{l} + T_{2} \frac{r}{l} = mr\omega^{2}$ $T_{1} - T_{2} = 2mg (1) \qquad T_{1} + T_{2} = ml\omega^{2} (2)$	4 Marks: Correct answer. 3 Marks: Makes significant progress towards the solution. 2 Marks: Resolves forces and finds expressions for sin θ and cos θ
	Adding equations (1) and (2) $2T_1 = 2mg + ml\omega^2 \text{ or } T_1 = m\left(\frac{l\omega^2}{2} + g\right)$ Then from equation (2) $m\left(\frac{l\omega^2}{2} + g\right) + T_2 = ml\omega^2 \text{ or } T_2 = m\left(\frac{l\omega^2}{2} - g\right)$ Therefore $T_1 = m\left(\frac{l\omega^2}{2} + g\right) \text{ and } T_2 = m\left(\frac{l\omega^2}{2} - g\right)$	I Mark: Resolves forces in the vertical and horizontal directions a B.

(ii) $T_2 = m \left(\frac{l\omega^2}{2} - g\right) > 0$ $\frac{l\omega^2}{2} > g$ $\omega^2 > \frac{2g}{l} \text{ or } \omega > \sqrt{\frac{2g}{l}}$ (asymptote at $x = \pm 1$) $y = \frac{x^2}{ x^2 - 1 } = \left \frac{x}{(x + 1)(x - 1)} \right \text{ (asymptote at } x = \pm 1)$ $y = \frac{x^2}{ x^2 - 1 } = \left \frac{1}{1 - \frac{1}{x^2}} \right x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{x^2}{ x^2 - 1 } = \left \frac{1}{1 - \frac{1}{x^2}} \right x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ x - \frac{1}{x^2} } = \frac{x^2}{ x - \frac{1}{x^2} $	12/6		13610
$T_1 = m \left(\frac{l\omega^2}{2} - g\right) > 0$ $\frac{l\omega^2}{2} > g$ $\omega^2 > \frac{2g}{l} \text{ or } \omega > \sqrt{\frac{2g}{l}}$ $y = \frac{x^2}{ x^2 - 1 } = \frac{x^2}{ (x + 1)(x - 1) } \text{ (asymptote at } x = \pm 1)$ $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } y = 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm \infty, y \to 1 \text{ (asymptote at } x \to \pm 1)$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm 1$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm 1$ $y = \frac{1}{ 1 - \frac{1}{x^2} } x \to \pm 1$	13(b) (ii)	Least value of ω for the strings to be taut: $T_1 > T_2$ and $T_2 > 0$	1 Mark: Correct
13(c) $y = \frac{x^2}{ x^2 - 1 } = \frac{x^2}{ (x + 1)(x - 1) }$ (asymptote at $x = \pm 1$) $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } \xrightarrow{x \to \pm \infty}, y \to 1 \text{ (asymptote at } y = 1)$ 1 Mark: Determines the asymptotes or shows some understanding. 13(c) (ii) $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } \xrightarrow{x \to \pm \infty}, y \to 1 \text{ (asymptote at } y = 1)$ 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (i) $z = (a + ib) \text{ (asymptote at } y = 1)$ 14(a) $z = (a + ib)(a - ib)$ $= a^2 - i^2 b^2$ $= a^2 + b^2 = z ^2$ 14(a) (ii) $z = (a + ib)(a - ib)$ $= a^2 - i^2 b^2$ $= a^2 + b^2 = z ^2$ 1 Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $= v \times v\overline{w}$ $= v ^2 w \text{ from (i)}$ 2 Marks: Correct answer. 2 Marks: Correct answer. 1 Mark: Correct answer. 2 Marks: Correct answer.		$T_2 = m \left(\frac{l\omega^2}{2} - g \right) > 0$	
13(c) $y = \frac{x^2}{ x^2 - 1 } = \frac{x^2}{ (x + 1)(x - 1) }$ (asymptote at $x = \pm 1$) $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } \xrightarrow{x \to \pm \infty}, y \to 1 \text{ (asymptote at } y = 1)$ 1 Mark: Determines the asymptotes or shows some understanding. 13(c) (ii) $y = \frac{x^2}{ x^2 - 1 } = \frac{1}{ 1 - \frac{1}{x^2} } \xrightarrow{x \to \pm \infty}, y \to 1 \text{ (asymptote at } y = 1)$ 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (i) $z = (a + ib) \text{ (asymptote at } y = 1)$ 14(a) $z = (a + ib)(a - ib)$ $= a^2 - i^2 b^2$ $= a^2 + b^2 = z ^2$ 14(a) (ii) $z = (a + ib)(a - ib)$ $= a^2 - i^2 b^2$ $= a^2 + b^2 = z ^2$ 1 Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $= v \times v\overline{w}$ $= v ^2 w \text{ from (i)}$ 2 Marks: Correct answer. 2 Marks: Correct answer. 1 Mark: Correct answer. 2 Marks: Correct answer.		$\left \frac{l\omega^2}{2} > g \right $	
(i) $y = \frac{x^2}{x^2 - 1} = \frac{1}{(x + 1)(x - 1)}$ (asymptote at $x = \pm 1$) Correct answer. $y = \frac{x^2}{x^2 - 1} = \frac{1}{1 - \frac{1}{x^2}} x \to \pm \infty, \ y \to 1 \text{ (asymptote at } y = 1)$ 1 Mark: Determines the asymptotes or shows some understanding. 13(c) (ii) $y = \frac{x^2}{x^2 - 1} = \frac{1}{1 - \frac{1}{x^2}} x \to \pm \infty, \ y \to 1 \text{ (asymptote at } y = 1)$ 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (i) $z = a + ib \text{ where } a \text{ and } b \text{ are real.}$ $z = (a + ib)(a - ib)$ $z = a^2 + b^2 = z ^2$ 14(a) (ii) $z = \sqrt{x^2} = x^2$			
shows some understanding. 13(c) (ii) 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (i) 14(a) (ii) 14(a) (iii) Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $z_3 = v\overline{y_1}v$ $z_3 = v\overline{y_1}v$ $z_3 = v\overline{y_1}v$ $z_3 = v\overline{y_2}v$ $z_3 = v\overline{y_2}v$ $z_3 = v\overline{y_2}v$ $z_3 = v\overline{y_3}v$ $z_3 = v\overline{y_2}v$ $z_3 = v\overline{y_3}v$ $z_3 = v$		$y = \left \frac{x^2}{x^2 - 1} \right = \left \frac{x^2}{(x+1)(x-1)} \right $ (asymptote at $x = \pm 1$)	. —
understanding. 13(c) (ii) 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (i) 2 Marks: Correct answer. 1 Mark: Determines the asymptotes or shows some understanding. 14(a) (ii) $z\overline{z} = (a+ib)(a-ib)$ $= a^2 - i^2b^2$ $= a^2 + b^2 = z ^2$ 14(a) (iii) Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $= v \times v\overline{v}\overline{w}$ $= v\overline{v}\overline{v}w$ $= v ^2 w$ from (i) 2 Marks: Correct answer. 1 Mark: Correct answer. 1 Mark: Correct answer.		$y = \left \frac{x^2}{x^2 - 1} \right = \left \frac{1}{1 - \frac{1}{x^2}} \right x \to \pm \infty, \ y \to 1 \text{ (asymptote at } y = 1\text{)}$	Determines the asymptotes or
13(c) (ii) $ \begin{vmatrix} 13(c) \\ 4 & 3 \\ 2 & 4 \\ 3 & 3 \\ 2 & 4 & 4 \\ 3 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 2 & 4 & 4 & 4 & 4 \\ 2 & 4 & 3 & 4 & 4 \\ 2 & 4 & 3 & 4 & 4 & 4 \\ 2 & 4 & 3 & 4 & 4 & 4 & 4 \\ 2 & 4 & 3 & 4 & 4 & 4 & 4 \\ 2 & 4 & 3 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\ 2$		44 3 - 2 - 1	
(ii) $\begin{vmatrix} 4 & 1 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 3 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \\ 2 & 3 & 4 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 4 \\ 2 & 3 & 4 & 4 \\ 2 & 4 & 4 & 4 \\ 2 & 4 & 4 & 4 \\ 2 & 4 & 4 & 4 \\ 2 & 4 & 4 & 4 \\ 2 & 4$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Determines the asymptotes or shows some understanding. 14(a) (i) Let $z = a + ib$ where a and b are real. $z\overline{z} = (a + ib)(a - ib)$ $z\overline{z} = (a + ib)(a - ib)$ $z\overline{z} = a^2 + b^2 = z ^2$ 14(a) (ii) Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $z_3 = v\overline{z_2}$ $z_4 = v \times v\overline{w}$ 1 Mark: Uses the formula to obtain an expression for		y 4 [†]	
(i) $z\overline{z} = (a+ib)(a-ib)$ answer. $z\overline{z} = (a+ib)(a-ib)$ answer. $z^2 - i^2b^2$ $= a^2 + b^2 = z ^2$ 2 Marks: Correct answer. $z_3 = v\overline{z_2}$ $= v \times v\overline{w}$ $= v ^2 w \text{ from (i)}$ 1 Mark: Uses the formula to obtain an expression for		4 -3 -2 -11 2 3 4 2 3 4	Determines the asymptotes or shows some
$ zz = (a+ib)(a-ib) $ $ = a^2 - i^2b^2 $ $ = a^2 + b^2 = z ^2 $		Let $z = a + ib$ where a and b are real.	
$= a^{2} + b^{2} = z ^{2}$ $14(a) \text{ Now } z_{1} = w, z_{2} = v\overline{z}_{1} = v\overline{w} \text{ and } v = 1$ $z_{3} = v\overline{z}_{2}$ $= v \times v\overline{w}$ $= v ^{2} w \text{ from (i)}$ $2 \text{ Marks: Correct answer.}$ $1 \text{ Mark: Uses the formula to obtain an expression for }$	(1)		answer.
14(a) Now $z_1 = w$, $z_2 = v\overline{z_1} = v\overline{w}$ and $ v = 1$ $z_3 = v\overline{z_2}$ $= v \times v\overline{w}$ $= v ^2 w \text{ from (i)}$ 2 Marks: Correct answer. 1 Mark: Uses the formula to obtain an expression for		* * *	
(ii) $ z_3 = v\overline{z_2} $ Correct answer. $ z_3 = v\overline{v_2} $ 1 Mark: Uses the formula to obtain an expression for	144		
$= v \times v \overline{w}$ $= v \overline{v} w$ $= v ^2 w \text{ from (i)}$ 1 Mark: Uses the formula to obtain an expression for		•	· ·
CAPTER STORY		$= v \times \overline{v} \overline{v}$ $= v \overline{v} v$	the formula to obtain an
			z_3 .

14(b)	Integration by parts	2 Marks:
(i)		Correct answer.
``	$I_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \sin x dx$	1 Mark: Sets up
	$= -\left[\sin^{n-1}x\cos x\right]_0^{\frac{\pi}{2}} + (n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}x\cos^2xdx$	the integration and shows
	$=(n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}x\cos^2xdx$	some understanding.
14(b) (ii)	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$	2 Marks: Correct answer.
	$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1-\sin^2 x) dx$	1 Mark: Makes
	$= (n-1) \int_0^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^n x) dx$	some progress towards the
	$= (n-1)[I_{n-2} - I_n] = (n-1)I_{n-2} - nI_n + I_n$	solution.
	$nI_n = (n-1)I_{n-2}$	
	$I_n = \frac{(n-1)}{n} I_{n-2}$	
14(b) (iii)	$I_4 = \frac{(4-1)}{4}I_2$	1 Mark: Correct answer.
	$=\frac{3}{4}\times\frac{(2-1)}{2}I_0$:
	$= \frac{3}{8} \times \int_0^{\frac{\pi}{1}} 1 dx = \frac{3\pi}{16}$	
14(c)		4 Marks: Correct answer.
		3 Marks:
		Correct integral for the volume
		of the solid.
	→ → × × × × × × × × × × × × × × × × × ×	
	Cylindrical shell – inner radius x, outer radius $x + \delta x$, height y.	2 Marks: Correct
	$\delta V = \pi \left[(x + \delta x)^2 - x^2 \right] y$	expression for δV .
	$= \pi \left[2x\delta x + \delta x^2 \right] y = \pi (2x + \delta x) (\log_e x) \delta x$	or.
	$V = 2 \times \lim_{\delta x \to 0} \sum_{i=1}^{e} \pi(2x + \delta x) \log_{e} x \delta x = 2\pi \int_{1}^{e} (x \log_{e} x) dx$	1 Mark: Determines the radius or height
	$=2\pi\left(\left[\log_{\epsilon} x \times \frac{1}{2} x^{2}\right]_{1}^{\epsilon} - \int_{1}^{\epsilon} \left(\frac{1}{2} x^{2} \times \frac{1}{x}\right) dx\right)$	of the cylindrical shell.
	$=2\pi \left[\frac{1}{2}e^2 - \frac{1}{2}\int_1^e x dx\right] = \pi \left(e^2 - \left[\frac{x^2}{2}\right]_1^e\right) = \frac{\pi}{2}(e^2 + 1)$	

14(d)	Step 1: To prove the statement true for $n=1$	3 Marks:
	LHS=1+x and RHS= $\frac{x^{1+1}-1}{x-1} = \frac{(x+1)(x-1)}{(x-1)} = x+1$	Correct answer
	$\frac{1}{x-1} = \frac{1}{x-1} = \frac{1}{(x-1)} = \frac{1}{x+1}$	226.1
	Result is true for $n=1$	2 Marks: Proves the
	Step 2: Assume the result true for $n=k$	result true for
		n=1 and
	$1 + x + x^2 + + x^k = \frac{x^{k+1} - 1}{x - 1}$	attempts to use
	To prove the result is true for $n = k + 1$	the result of $n = k$ to prove
	$x^{k+1} = x^{k+2} - 1$	the result for
	$1 + x + x^{2} + \dots + x^{k} + x^{k+1} = \frac{x^{k+2} - 1}{x - 1}$	n=k+1.
	LHS = $1 + x + x^2 + + x^k + x^{k+1}$	
	$\mathbf{r}^{k+1} = 1$	1 Mark: Proves
	$= \frac{x^{k+1} - 1}{x - 1} + x^{k+1}$	the result true for $n=1$
	$=\frac{x^{k+1}-1}{x^{k+1}}+\frac{x^{k+1}(x-1)}{x^{k+1}}$	101 77
	x-1 x-1	
	$= \frac{x^{k+1} - 1 + x^{k+2} - x^{k+1}}{x - 1} = \frac{x^{k+2} - 1}{x - 1} = RHS$	
	Result is true for $n=k+1$ if true for $n=k$	
	Step 3: Result true by principle of mathematical induction.	
15(a)	$P(x) = (x - \alpha)^2 Q(x)$	2 Marks:
(i)	$P'(x) = (x-\alpha)^2 Q'(x) + 2(x-\alpha)Q(x)$	Correct answer
	$= (x-\alpha)[(x-\alpha)Q'(x) + 2Q(x)]$	1 Mark: Finds
	Therefore $P'(\alpha) = 0$ and $x = \alpha$ is a root of $P'(x)$.	P'(x)
15(a)	$P(x) = x^5 - ax^2 + b$ has a root $x = a$	2 Marks:
(ii)	$P(\alpha) = \alpha^5 - a\alpha^2 + b = 0 $ (1)	Correct answer
	1 . ,	
	$P'(x) = 5x^4 - 2ax$	1 Mark: Shows
	$P'(\alpha) = 5\alpha^4 - 2a\alpha = 0 \text{ or } a = \frac{5}{2}\alpha^3 = 2.5\alpha^3$	some understanding
	Substituting $a = 2.5a^3$ into equation (1)	of the problem.
	I	
	$\alpha^5 - \frac{5}{2}\alpha^3 \times \alpha^2 + b = 0$	
	$b = \frac{3}{2}\alpha^5 = 1.5\alpha^5$	
<u>. </u>	$\therefore a = 2.5\alpha^3 \text{ and } b = 1.5\alpha^5$	
15(b) (i)	Solving the equations $y = x^4 + 4x^3$ and $y = mx + b$	i Mark: Correc
	simultaneously has two solutions $(x = \alpha \text{ and } x = \beta)$.	answer.
	$\therefore x^4 + 4x^3 - mx - b = 0$ is degree 4 with multiple roots at $x = \alpha$,
	and $x = \beta$. Zeros are α, α, β and β .	
		•

15(b) (ii)	$\alpha + \alpha + \beta + \beta = -\frac{b}{a}$	3 Marks: Correct answer.
	$2(\alpha+\beta) = -4 \text{ or } \alpha+\beta=-2$	2 Marks: Makes
	$\alpha\alpha + \alpha\beta + \alpha\beta + \alpha\beta + \alpha\beta + \beta\beta = \frac{c}{}$	significant
	$\alpha^2 + \beta^2 + 4\alpha\beta = 0$	progress towards the
	$(\alpha+\beta)^2+2\alpha\beta=0$	solution. 1 Mark: Uses
	$\alpha\beta = -2$	the
	$\alpha \alpha \beta + \alpha \alpha \beta + \alpha \beta \beta + \alpha \beta \beta = -\frac{d}{a}$ and $\alpha \alpha \beta \beta = \frac{e}{a}$	relationships between the
	$2\alpha\beta(\alpha+\beta)=m \qquad (\alpha\beta)^2=-b$	roots and coefficients.
	m=8 b=-4	
15(c) (i)	Newton's second law: $\ddot{x} = g - kv$	1 Mark: Correct answer.
	$\frac{dv}{dt} = g - kv \qquad \qquad \downarrow $	
15(c) (ii)	$\frac{dv}{dt} = g - kv$	3 Marks: Correct answer.
	dt 1	
	$\frac{dt}{dv} = \frac{1}{g - kv}$	2 Marks: Correctly
	$t = -\frac{1}{k} \log_e(g - kv) + C$	substitutes the initial
	Initial conditions $t = 0$ and $v = 0$	conditions into
	$0 = -\frac{1}{k} \log_{\epsilon}(g) + C$	the expression for t
	$C = \frac{1}{k} \log_{\sigma} g$	1 Mark: Finds
	$t = -\frac{1}{\nu}\log_{\epsilon}(g - kv) + \frac{1}{\nu}\log_{\epsilon}g$	the correction expression for t.
	$= \frac{1}{k} \log_e \left(\frac{g}{g - kv} \right)$	
	$kt = \log_e \left(\frac{g}{g - kv} \right)$	
	$e^{kt} = \frac{g}{g - kv}$	
	$ge^{it}-kve^{it}=g$:
	$kve^{tt} = ge^{tt} - g$	
	$v = \frac{g}{k}(1 - e^{-kt})$	

15(c)	dv dv	3 Marks:
(iii)	$\frac{dv}{dt} = v \frac{dv}{dx}$	Correct answer.
	$v\frac{dv}{dt} = g - kv$	
1	$\frac{v}{dx} = g - kv$	2 Marks:
	dv g-kv	Makes
	$\frac{dv}{dx} = \frac{g - kv}{v}$	significant
		progress towards the
	$\frac{dx}{dy} = \frac{v}{g - ky}$	solution.
	160 100 1 8	Solution.
	$x = \int \frac{-\frac{1}{k}(g - kv) + \frac{8}{k}}{g - kv} dv$	1 Mark: Uses
	8 - n.y	results for part
	$= -\frac{1}{k} v - \frac{g}{k^2} \log_e(g - kv) + C$	(i) to determine
]		an expression
	When $x = 0$ and $y = 0$	for $\frac{dx}{dy}$
	$0 = -\frac{1}{k} \times 0 - \frac{g}{k^2} \log_e(g - k \times 0) + C$	$\frac{101}{dv}$
	$k^2 = k^2 \log_2(k^2 + k^2) + 0$	
	$C = \frac{g}{L^2} \log_e g$	
	$C = \frac{1}{k^2} \log_e g$	
	1 g log (a bu) g log a	
	$x = -\frac{1}{k}\nu - \frac{g}{k^2}\log_e(g - k\nu) + \frac{g}{k^2}\log_e g$	
	1 g, (g)	
	$= -\frac{1}{k}v - \frac{g}{k^2}\log_e\left(\frac{g}{g - kv}\right)$	
16(a)		2 Mariles
(i)	$z^n = [\cos\theta + i\sin\theta]^n$	2 Marks: Correct answer.
	$=\cos n\theta + i\sin n\theta$	Correct answer.
	$\frac{1}{\sigma^n} = [\cos\theta + i\sin\theta]^{-n}$	1 Mark: Uses
	$z^n = [\cos \theta + \sin \theta]$	De Moivre's
	$=\cos n\theta - i\sin n\theta$	theorem
	$z^{n} - \frac{1}{z^{n}} = \cos n\theta + i \sin n\theta - \cos n\theta + i \sin n\theta$	1
	$\frac{z^{n}-\cos n\sigma+i\sin n\sigma-\cos n\sigma+i\sin n\sigma}{z^{n}}$	1
	$=2i\sin n\theta$	
16(a)	$(1)^5$ $(1)^2$ $(1)^3$	3 Marks:
(ii)	$\left(z - \frac{1}{z}\right)^{5} = z^{5} + 5z^{4} \left(-\frac{1}{z}\right) + 10z^{3} \left(-\frac{1}{z}\right)^{2} + 10z^{2} \left(-\frac{1}{z}\right)^{3}$	Correct answer.
	(1)4 (1)5	2 Marks:
	$+5z\left(-\frac{1}{z}\right)^3+\left(-\frac{1}{z}\right)^3$	Makes
	(2) (2)	significant
	$=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$	progress.
	(z^3) (z^3) (z)]
		1 Mark; Writes
	$(2i\sin\theta)^5 = 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin\theta$	the binomial
	1 1 1 then strangers or	expansion.
	$\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$	
L	·	_ 1

16(b)	$(a+b+c)^2 \le 3(a^2+b^2+c^2)$	2 Marks:
-	$3(a^2 + b^2 + c^2) - (a+b+c)^2 \ge 0$	Correct answer.
	$3(a^2+b^2+c^2)-[a^2+2ab+2ac+b^2+2bc+c^2] \ge 0$	1 Mark: Makes
	$2(a^2 + b^2 + c^2 - ab - ac - bc) \ge 0$	some progress
	$(a-b)^2 + (a-c)^2 + (b-c)^2 \ge 0$ True	towards the solution.
16(c)	Consider $\triangle BNQ$ and $\triangle AMQ$.	3 Marks:
(i)	$\angle QBN = \angle QAM \text{ (angle between a tangent and a chord equals}$ the angle in the alternate segment)	Correct answer.
	$\angle QNB = \angle QMA = 90^{\circ}$ (perpendiculars from Q)	2 Marks: Makes
	.: ΔBNQ ΔAMQ (Two angles of one triangle are respectively equal to two angles of another triangle)	significant progress
	$\Delta ALQ \parallel \Delta BMQ$ is a similar proof.	towards the solution.
	Consider $\triangle ALQ$ and $\triangle BMQ$.	Solution.
	$\angle QAL = \angle QBM$ (angle between a tangent and a chord equals the angle in the alternate segment)	1 Mark: Applies a
	$\angle QLA = \angle QMB = 90^{\circ}$ (perpendiculars from Q)	relevant circle theorem.
	∴ ΔALQ ΔBMQ (Two angles of one triangle are respectively equal to two angles of another triangle)	theorem.
16(c) (ii)	$\frac{QN}{QM} = \frac{QB}{QA} \text{ (matching sides in similar triangles } \Delta BNQ \parallel \mid \Delta AMQ$	2 Marks: Correct answer.
	$\frac{QM}{QL} = \frac{QB}{QA} \text{ (matching sides in similar triangles } \Delta ALQ \parallel \Delta BMQ)$ $\therefore \frac{QN}{QM} = \frac{QM}{QL}$ This represents a geometric sequence QN , QM , QL ,	1 Mark: Matches the sides in the similar triangles.
16(d)	Let $f(x) = 1 + x + \frac{x^2 e^x}{2} - e^x$	3 Marks: Correct answer.
	$f'(x) = 1 + \frac{1}{2}(x^2e^x + e^x 2x) - e^x = 1 + xe^x + \frac{x^2e^x}{2} - e^x$ $f'(0) = 0$	2 Marks: Makes significant
	$f''(x) = xe^{x} + e^{x} + \frac{1}{2}(x^{2}e^{x} + e^{x}2x) - e^{x}$ $= 2xe^{x} + \frac{x^{2}e^{x}}{2} > 0 \text{ for } x > 0$	progress towards the solution.
	Therefore $f'(x) > 0$ (increasing) for $x > 0$ and $f(0) = 0$	1 Mark; Sets up
	$\therefore 1 + x + \frac{x^2 e^x}{2} - e^x > 0$	f(x) and uses calculus.
	$\therefore 1 + x + \frac{x^2 e^x}{2} > e^x$	