麗 /	\CE	Exami	ination
-----	-----	-------	---------

2015
YEAR 12
YEARLY EXAMINATION

Mathematics

General Instructions

- · Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Ouestions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- · Allow about 2 hour 45 minutes for this section

STUDENT NUMBER/NAME:

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

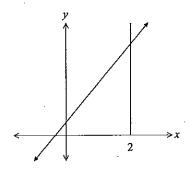
- 1 What is the value of $\lim_{x\to 3} \frac{x^2 + 2x 15}{x 3}$?
 - (A) 0
 - (B) 3
 - (C) 5
 - (D) 8
- 2 What is the solution to the equation $2\cos^2 x 1 = 0$ in the domain $0 \le x \le 2\pi$?
 - (A) $x = \frac{\pi}{6}, \frac{11\pi}{6}$
 - (B) $x = \frac{\pi}{4}, \frac{7\pi}{4}$
 - (C) $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
 - (D) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- 3 An infinite geometric series has a first term of 3 and a limiting sum of 1.8. What is the common ratio?
 - (A) -0.3
 - (B) -0.6
 - (C) -1.5
 - (D) -3.75
- 4 What is the value of $\int_0^1 (e^{3x} + 1) dx$?
 - (A) $\frac{1}{3}e^3$

(B)

(C) $\frac{1}{3}(e^3+1)$

(D) $\frac{1}{3}(e^3+2)$

- 5 What is the value of f'(x) if $f(x) = \sqrt{(2x^2 + 1)^3}$?
 - (A) $f'(x) = \frac{3}{2}\sqrt{2x^2+1}$
 - (B) $f'(x) = 4x\sqrt{2x^2+1}$
 - (C) $f'(x) = 6x\sqrt{2x^2 + 1}$
 - (D) $f'(x) = 12x\sqrt{2x^2 + 1}$
- 6 What is the equation of the tangent to the curve $y = \cos x$ at the point $\left(\frac{\pi}{2}, 0\right)$?
 - $(A) \quad x y \frac{\pi}{2} = 0$
 - (B) $x+y-\frac{\pi}{2}=0$
 - (C) y=0
 - (D) $2x + y \pi = 0$
- 7 A region in the first quadrant is bounded by the line y = 3x + 1, the x-axis, the y-axis, and the line x = 2.



What is the volume of the solid of revolution formed when this region is rotated about the x-axis?

- (A) 8 units³
- (B) 38 units³
- (C) $8\pi \text{ units}^3$
- (D) $38\pi \text{ units}^3$

- 8 The acceleration of a particle moving in a straight line is given by the formula a = 12t + 6. Initially the particle is at x = 5 metres and the initial velocity of the particle is -36 m/s. When is the particle at rest?
 - (A) t=0
 - (B) t = 1
 - (C) t=2
 - (D) t = 3
- 9 What are the coordinates of the focus of the parabola $x^2 = 6y + 2x + 11$?
 - (A) $\left(-\frac{3}{2},1\right)$
 - (B) $\left(-\frac{1}{2},1\right)$
 - (C) $\left(1, -\frac{3}{2}\right)$
 - (D) $\left(1, -\frac{1}{2}\right)$
- 10 What is the value of $[f(x)]^2$ if $f(x) = 4 + 2^{-x}$?
 - (A) $16+2^{3-x}+2^{-2x}$
 - (B) $16+2^{2-x}+2^{-2x}$
 - (C) $17+2^{3-x}$
 - (D) $17 + 2^{2-x}$

Section II

90 marks

Attempt Questions 11 - 16

Allow about 2 hours and 45 minutes for this section

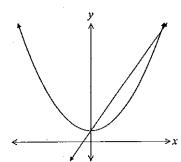
Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

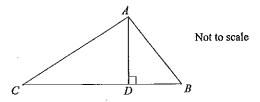
Que	stion 11 (15 marks)	Marks
(a)	Simplify $\frac{y}{y^2-4} - \frac{2}{y-2}$	2
(b)	An insurance company has calculated that the probability of a woman being alive in 50 years time is 0.85 and the probability of her husband being alive in 50 years time is 0.75. What is the probability that in 50 years time: (i) both will be alive; (ii) only one of them will be alive?	1
(c)	For the arithmetic sequence 4, 9, 14, 19, (i) Write the rule to describe the <i>n</i> th term. (ii) What is the 25 th term? (iii) Find the sum of the first 100 terms.	1 1 1
(d)	Differentiaté (i) $\tan 5x$ (ii) $\frac{\log_t x}{x}$ (iii) $x\cos x$	1 1 1

2

What is the area enclosed between the curves $y = x^2 + 1$ and y = 3x + 1?



(f) In the triangle ABC, $\angle ACB = 30^{\circ}$, $\angle ABC = 50^{\circ}$ and BC = 10 cm. The foot of the perpendicular from A to BC is D.



Use the Sine Rule to find an expression for the length of AB.

2

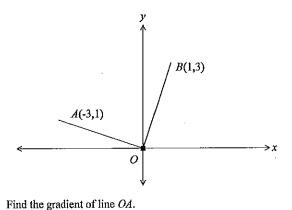
Hence or otherwise, find the length of AD. Answer correct to two decimal places.

1

Question 12 (15marks)

Marks

(a) Points A(-3,1) and B(1,3) are on a number plane. Copy the diagram into your writing booklet.



Show that OA is perpendicular to OB. OACD is a quadrilateral in which BC is parallel to OA. Show that the equation of BC is x+3y-10=0. The point C lies on the line x = -2. What are the coordinates of point C?

Show that the length of the line BC is $\sqrt{10}$.

Find the area of OACD.

(b) The table shows the values of a function f(x) for five values of x.

х	1	1.5	2	2.5	3
f(x)	4	1.5	-2	2.5	8

Use Simpson's rule with these five vales to estimate $\int_{0}^{x} f(x)dx$.

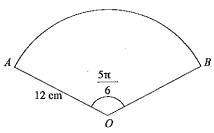
Two-digit numbers are formed from the digits 2, 3, 4, 6 with no repetition of digits allowed. A two-digit number is then selected at random. What is the probability the number is prime?

2

1

2

(d)



In the diagram, AB is an arc of a circle with centre O.

The radius OA = 12 cm and the angle AOB is $\frac{5\pi}{6}$ radians.

Find the length of the arc AB.

(e) Consider the functions $y = x^2$ and $y = x^2 - 3x + 2$.

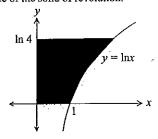
- Sketch the two functions on the same axes.
- (ii) Hence or otherwise find the values of x such that $x^2 > (x-1)(x-2)$.

Question 13 (15 marks)

Marks

(a) In the diagram, the shaded region bounded by the curve $y = \ln x$, x-axis, y-axis and the line $y = \ln 4$, is rotated about the y-axis.

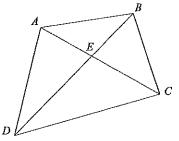
Find the exact volume of the solid of revolution.



(b) Evaluate $\int_0^{\frac{\pi}{6}} (x^2 + \sin 2x) dx$

2

(c) In quadrilateral ABCD the diagonals AC and BD intersect at E. Given AE = 3, EC = 6, BE = 4 and ED = 8.



Not to scale

(i) Show that $\triangle ABE \parallel \triangle DEC$

- 3
- (ii) What type of quadrilateral is ABCD? Justify your answer.

2

2

(d) Find the shortest distance between the point (0,5) and the line 3x-y+1=0.

.

- (e) The parabola $y = ax^2 + bx + c$ has a vertex at (3, 1) and passes through (0, 0).
 - Find the other x-intercept of the parabola.

-

(ii) Find a, b and c.

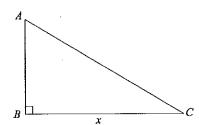
2

8

Que	estion 14 (15 marks)	Marks
(a)	A function $f(x)$ is defined by $f(x) = x^2(3-x)$.	
	(i) Find the stationary points for the curve $y = f(x)$ and determinature.	ne their 2
	(ii) Sketch the graph of $y = f(x)$ showing the stationary points at x-intercepts.	nd 2
	(iii) Find the equation of the tangent to the curve at the point $P(1, 2)$	2). 1
(b)	The quadratic equation $2m^2-3m+6=0$ has roots α and β . Find the value of:	
	(i) $\alpha + \beta$	1
•	(ii) αβ	1
	(iii) $\alpha^2 + \beta^2$	1
(c)	The displacement of a object at time (t) seconds is given by: $x = 3e^{-2t} + 10e^{-t} + 4t$ Find the time the object comes to rest.	3
(d)	The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?	2
(e)	Find $\int_0^{\frac{\pi}{8}} \sec^2 2x dx$.	2

Question 15 (15 marks)		Marks	
(a)	(i)	On the same set of axes, sketch the graphs of $y = \sin x$ and $y = 1 - \cos x$ over the domain $0 \le \theta \le \pi$.	2
	(ii)	Write down the values of x for which $\sin x = 1 - \cos x$ in the domain $0 \le \theta \le \pi$	1
	(iii)	Find the area between of $y = \sin x$ and $y = 1 - \cos x$ over the domain $0 \le \theta \le \pi$.	2
(b)		ett left \$1000 in her will for World Vision. Her instructions were that oney be invested at 5% interest, compounded annually.	
	(i)	How much money would be given to World Vision after 100 years?	1
	(ii)	Scarlett has requested her family invest a further \$1000 at the beginning of each subsequent year at the same interest rate. How much money would be given to World Vision after 100 years if her family followed Scarlett's instructions?	2

(c)



A cable of length 3 metres is to be bent to form the hypotenuse and base of a right-angled triangle ABC. Let the length of the base BC is x metres.

_	• •	
(i)	What is the length of the hypotenuse AC in terms of x ?	1
(ii)	Show that the area of the triangle ABC is $0.5x\sqrt{9-6x}$.	2
(iii)	What value of x gives the maximum possible area of the triangle?	3
(iv)	Find the maximum possible area of the triangle.	1

Que	Question 16 (15 marks)		Marks
(a)		bject is moving in a straight line and its velocity is given by; $v=1-2\sin 2t$ for $t\geq 0$ e v is measured in metres per second and t in seconds.	
	Initia	lly the object is at the origin.	
	(i)	Find the displacement x , as a function of t .	2
-	(ii)	What is the position of the object when $t = \frac{\pi}{3}$?	1
	(iii)	Find the acceleration a, as a function of t.	1
	(iv)	Sketch the graph of a, as a function of t, for $0 \le t \le \pi$.	1
	(v)	What is the maximum acceleration of the object?	1
(b)	One y	adiation in a rock after a nuclear accident was 8,000 becquerel (bq). We are later, the radiation in the rock was 7,000 bq. It is known that the cion in the rock is given by the formula: $R = R_0 e^{-H}.$	
	where	R_0 and k are constants and t is the time measured in years.	
	(i)	Evaluate the constants R_0 and k .	2
	(ii)	What is the radiation of the rock after 10 years? Answer correct to the nearest whole number.	1
	(iii)	The region will become safe when the radiation of the rock reaches 50 bq. After how many years will the region become safe?	2
Y.			
(c)		angle ABC is right-angled at C . D is the point on AB such that CD is ndicular to AB . Let $\angle BAC = \theta$.	
	Draw	a diagram showing this information.	
	(i)	Given that $8AD + 2BC = 7AB$.	2
		Show that $8\cos\theta + 2\tan\theta = 7\sec\theta$	
٠	(ii)	Find $ heta$	2

End of paper

ACE Examination 2015

HSC Mathematics Yearly Examination

Worked solutions and marking guidelines

Sectio	Section I			
	Solution	Criteria		
1	$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3} = \lim_{x \to 3} \frac{(x + 5)(x - 3)}{(x - 3)}$ $= \lim_{x \to 3} (x + 5)$ $= 8$	1 Mark: D		
2	$2\cos^{2} x - 1 = 0$ $\cos^{2} x = \frac{1}{2} \text{ or } \cos x = \pm \frac{1}{\sqrt{2}}$ $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$	1 Mark: D		
3	$a=3$ and $S=1.8$ $S = \frac{a}{1-r}$ $1.8 = \frac{3}{1-r}$ $1.8-1.8r = 3$ $1.8r = -1.2$ $r = -0.6$	1 Mark: B		
4	$\int_0^1 (e^{3x} + 1) dx = \left[\frac{1}{3} e^{3x} + x \right]_0^1$ $= (\frac{1}{3} e^3 + 1) - (\frac{1}{3})$ $= \frac{1}{3} (e^3 + 2)$	1 Mark: D		
5	$f(x) = \sqrt{(2x^2 + 1)^3}$ $= (2x^2 + 1)^{\frac{3}{2}}$ $f'(x) = \frac{3}{2} \times (2x^2 + 1)^{\frac{1}{2}} \times 4x$ $= 6x\sqrt{(2x^2 + 1)}$	1 Mark: C		

		
6	$y = \cos x, \frac{dy}{dx} = -\sin x. \text{ At the point } \left(\frac{\pi}{2}, 0\right) m = -\sin \frac{\pi}{2} = -1$ $y - y_1 = m(x - x_1)$ $y - 0 = -1(x - \frac{\pi}{2})$ $x + y - \frac{\pi}{2} = 0$	1 Mark: B
7	$V = \pi \int_{a}^{b} y^{2} dx$ $= \pi \int_{0}^{2} (3x+1)^{2} dx$ $= \pi \int_{0}^{2} (9x^{2} + 6x + 1) dx$ $= \pi \left[3x^{3} + 3x^{2} + x \right]_{0}^{2}$ $= \pi \left[3 \times 2^{3} + 3 \times 2^{2} + 2 \right]$ $= 38\pi \text{ units}^{3}$	1 Mark: D
8	a = 12t + 6 $v = 6t^2 + 6t + c$ When $t = 0$ then $v = -36$ $-36 = 6 \times 0^2 + 6 \times 0 + c$ or $c = -36$ $v = 6t^2 + 6t - 36$ = 6(t+3)(t-2) Particle at rest $(v = 0)$ when $t = 2$	1 Mark: C
9	$x^{2} = 6y + 2x + 11$ $x^{2} - 2x = 6y + 11$ $(x-1)^{2} - 1 = 6y + 11$ $(x-1)^{2} = 6(y+2)$ $(x-1)^{2} = 4 \times \frac{3}{2} \times (y+2)$ Vertex is $(1,-2)$ and focal length is $\frac{3}{2}$. Focus is $\left(1, -\frac{1}{2}\right)$	1 Mark: D
10	$[f(x)]^{2} = [4+2^{-x}]^{2}$ $= 16+8\times2^{-x}+2^{-2x}$ $= 16+2^{3}\times2^{-x}+2^{-2x}$ $= 16+2^{3-x}+2^{-2x}$	1 Mark: A

Section	Section II				
11(a)	$\frac{y}{y^2-4} - \frac{2}{y-2} = \frac{y}{(y+2)(y-2)} - \frac{2}{(y-2)}$	2 Marks: Correct answer.			
	$= \frac{y - 2(y + 2)}{(y + 2)(y - 2)}$ $= \frac{-y - 4}{y^2 - 4}$	1 Mark: Finds a common denominator or shows some understanding.			
11(b) (i)	$P(E) = 0.85 \times 0.75$ = 0.6375	1 Mark: Correct answer.			
11(b) (ii)	Woman alive, husband dead or woman dead, husband alive. $P(E) = 0.85 \times 0.25 + 0.15 \times 0.75$ $= 0.325$	1 Mark: Correct answer.			
11(c) (i)	$a=4$ and $d=5$ for the sequence 4, 9, 14, 19, $T_n = a + (n-1)d$ $= 4 + (n-1) \times 5$ $= 5n-1$	1 Mark: Correct answer.			
11(c) (ii)	$T_{25} = 5 \times 25 - 1$ = 124	1 Mark: Correct answer.			
11(c) (iii)	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{100} = \frac{100}{2} [2 \times 4 + (100 - 1) \times 5]$ $= 25,150$	1 Mark: Correct answer.			
11(d) (i)	$\frac{d}{dx}(\tan 5x) = \sec^2 5x \times \frac{d}{dx}(5x)$ $= 5\sec^2 5x$	1 Mark: Correct answer.			
11(d) (ii)	$\frac{d}{dx} \left(\frac{\log_e x}{x} \right) = \frac{x \times \frac{1}{x} - \log_e x \times 1}{x^2}$ $= \frac{1 - \log_e x}{x^2}$	1 Mark: Correct answer.			
11(d) (iii)	$\frac{d}{dx}(x\cos x) = -x\sin x + \cos x$	1 Mark: Correct answer.			

		· · · ·
11(e)	$x^2+1=3x+1$	2 Marks: Correct answer.
	$x^2 - 3x = 0$	Correct answer.
	x(x-3)=0	1 Mark: Finds
	Point of intersection occurs when $x=0$ and $x=3$	the points of
	$A = \int_0^3 (3x+1) - (x^2+1)dx$	intersection or shows some
	$=\int_0^3 (3x-x^2)dx$	understanding of the problem.
	$= \left[\frac{3x^2}{2} - \frac{x^3}{3}\right]_0^3$	
	$= \left[\left(\frac{3 \times 3^2}{2} - \frac{3^3}{3} \right) - \left(\frac{3 \times 0^2}{2} - \frac{0^3}{3} \right) \right] = \frac{9}{2} \text{ square units}$	
11(f)	$\angle BAC = 180^{\circ} - 30^{\circ} - 50^{\circ} = 100^{\circ}$	2 Marks:
(i)	$\frac{AB}{\sin \angle ACB} = \frac{BC}{\sin \angle BAC}$	Correct answer.
		1 Mark: Finds
	$\frac{AB}{\sin 30^{\circ}} = \frac{10}{\sin 100^{\circ}}$	angle BAC or
		uses the Sine
	$AB = \frac{10\sin 30^{\circ}}{\sin 100^{\circ}}$	Rule with two correct values.
11(6)		1 Mark: Correct
11(f) (ii)	$\sin 50^\circ = \frac{AD}{AR}$	answer.
	112	
	$AD = \frac{10\sin 30^{\circ}\sin 50^{\circ}}{\sin 100^{\circ}}$	
	= 3.8893095 ≈ 3.89 cm	ļ
12(a) (i)	Gradient of <i>OA</i> : $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 1}{0 - 3} = -\frac{1}{3}$	1 Mark: Correct answer.
12(a) (ii)	Gradient of <i>OB</i> : $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 3}{0 - 1} = 3$	1 Mark: Correct answer.
	Perpendicular lines occur when $m_1 m_2 = -1$	
	$m_1 m_2 = -1$	
	$-\frac{1}{3} \times 3 = -1 \text{ True}$	
12(a) (iii)	If BC is parallel to OA then it has the same gradient or $m = -\frac{1}{3}$	2 Marks: Correct answer.
	$y-y_1=m(x-x_1)$	1 Mark: Uses
	$y-3=-\frac{1}{2}(x-1)$	the gradient intercept form
	5	with at least 1
	3y-9=-x+1 or $x+3y-10=0$	correct value.

12(a)	The point C lies on the line $x = -2$	1 Mark: Correct
(iv)	Substitute –2 for x into $x+3y-10=0$	answer.
<u> </u>	-2+3y-10=0	
	3y = 12 or y = 4	
	Coordinates of C are (-2,4).	-
12(a) (v)	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	1 Mark: Correct answer.
	$BC = \sqrt{(-2-1)^2 + (4-3)^2} = \sqrt{10}$	
12(a)	Quadrilateral OACD is a square (Rectangle with all sides equal)	1 Mark: Correct
(vi)	$A = s^2 = \left(\sqrt{10}\right)^2 = 10 \text{ square units}$	answer
12(b)	$\int_{1}^{3} f(x)dx \approx \frac{h}{3} [y_{0} + y_{4} + 4(y_{1} + y_{3}) + 2y_{2}]$	2 Marks: Correct answer.
	$\approx \frac{0.5}{3} \left[4 + 8 + 4(1.5 + 2.5) + 2 \times -2 \right] \approx 4$	1 Mark: Uses Simpson's rule.
12(c)	$S = \{23, 24, 26, 32, 34, 36, 42, 43, 46, 62, 63, 64\}$	2 Marks: Correct answer.
	$P(\text{prime}) = \frac{2}{12} = \frac{1}{6}$	1 Mark: Finds sample space.
12(d)	$l = r\theta$	1 Mark: Correct
	$=12\times\frac{5\pi}{6}=10\pi$ radians	answer.
12(e) (i)	$y=x^2-3x+2=(x-1)(x-2)$	2 Marks: Correct answer.
	-1 -3 -2 -1 1 2 3 4	1 Mark: One graph drawn correctly.
12(e) (ii)	Now $y = x^2 > (x-1)(x-2)$	1 Mark: Correct answer.
(11)	Point of intersection from the graph is $x = \frac{2}{3}$	and were
	Alternatively $x^2 = (x-1)(x-2)$	
	$x^2 = x^2 - 3x + 2$	
	$3x = 2 \text{ or } x = \frac{2}{3}$	
	Therefore $x^2 > (x-1)(x-2)$ when $x > \frac{2}{3}$	

$V = \pi \int_0^{\ln 4} \left(e^y \right)^2 dy$	3 Marks: Correct answer.
$=\pi \left[\frac{1}{2}e^{2y}\right]_0^{n4}$	2 Mark: Makes significant progress.
$= \frac{\pi}{2} \left(e^{2\mathbf{h}4} - e^{0} \right)$ $= \frac{15\pi}{2} \text{ cubic units}$	1 Mark: Uses volume formula with at least one correct value
$\int_0^{\frac{\pi}{6}} (x^2 + \sin 2x) dx = \left[\frac{x^3}{3} - \frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{6}}$	2 Marks: Correct answer.
$= \left[\frac{\left(\frac{x}{6}\right)^3}{3} - \frac{1}{2}\cos 2 \times \frac{\pi}{6} \right] - \left[\frac{0^3}{3} - \frac{1}{2}\cos 2 \times 0 \right]$ $= \left[\frac{\pi^3}{648} - \frac{1}{4} \right] + \frac{1}{2}$	1 Mark: Finds the primitive function or shows some understanding.
$=\frac{\pi^3}{648}+\frac{1}{4}=0.297849$	
In $\triangle ABE$ and $\triangle DEC$ $\angle AEB = \angle DEC$ (vertically opposite angles are equal) $\frac{AE}{EC} = \frac{BE}{ED}$ ($\frac{AE}{EC} = \frac{3}{6} = \frac{1}{2}$ and $\frac{BE}{ED} = \frac{4}{8} = \frac{1}{2}$) $\triangle ABE \parallel \triangle DEC$ (two pairs of corresponding sides are in proportion	3 Marks: Correct answer. 2 Marks: Makes significant progress. 1 Mark: One relevant
and the include angles are equal)	statement
$\angle BAE = \angle DCE$ (matching angles in similar triangles are equal) Therefore $\angle BAE$ and $\angle DCE$ are alternate angles and equal. $\therefore AB \square CD$ (alternate angles are only equal if the lines are parallel)	2 Marks: Correct answer. 1 Mark; Shows some understanding.
Therefore ABCD is a trapezium (one pair of opposite sides parallel)	
$d = \frac{\left ax_1 + by_1 + c \right }{\sqrt{a^2 + b^2}}$	2 Marks: Correct answer.
$= \frac{\left \frac{3 \times 0 - 1 \times 5 + 1}{\sqrt{3^2 + (-1)^2}} \right }{\left \frac{-4}{\sqrt{10}} \right } = \frac{4}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}$ $= \frac{2\sqrt{10}}{5}$	1 Mark: Uses the perpendicular distance formula with one correct value.
	$= \pi \left[\frac{1}{2} e^{2y} \right]_{0}^{\ln 4}$ $= \frac{\pi}{2} \left(e^{2\ln 4} - e^0 \right)$ $= \frac{15\pi}{2} \text{ cubic units}$ $\int_{0}^{\pi} (x^2 + \sin 2x) dx = \left[\frac{x^3}{3} - \frac{1}{2} \cos 2x \right]_{0}^{\frac{\pi}{6}}$ $= \left[\frac{\left(\frac{x}{6} \right)^3}{3} - \frac{1}{2} \cos 2x \frac{\pi}{6} \right] - \left[\frac{0^3}{3} - \frac{1}{2} \cos 2 \times 0 \right]$ $= \left[\frac{\pi^3}{648} - \frac{1}{4} \right] + \frac{1}{2}$ $= \frac{\pi^3}{648} + \frac{1}{4} = 0.297849$ In $\triangle ABE$ and $\triangle DEC$ $\angle AEB = \angle DEC$ (vertically opposite angles are equal) $\frac{AE}{EC} = \frac{BE}{ED} \left(\frac{AE}{EC} = \frac{3}{6} = \frac{1}{2} \text{ and } \frac{BE}{ED} = \frac{4}{8} = \frac{1}{2} \right)$ $\triangle ABE \parallel \triangle DEC$ (two pairs of corresponding sides are in proportion and the include angles are equal) $\angle BAE = \angle DCE \text{ (matching angles in similar triangles are equal)}$ Therefore $\angle BAE$ and $\angle DCE$ are alternate angles and equal. $\therefore AB \square CD \text{ (alternate angles are only equal if the lines are parallel)}$ Therefore $ABCD$ is a trapezium (one pair of opposite sides parallel) $d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$ $= \frac{ ax_0 - 1 \times 5 + 1 }{\sqrt{3^2 + (-1)^2}}$ $= \frac{ ax_0 - 1 \times 5 + 1 }{\sqrt{10}} = \frac{ ax_0 - 1 \times 5 + 1 }{\sqrt{10}}$ $= \frac{ ax_0 - 1 \times 5 + 1 }{\sqrt{10}} = \frac{ ax_0 - 1 \times 5 + 1 }{\sqrt{10}}$

13(e) (i)	The parabola is symmetrical about the vertex of (3, 1). If the parabola passes through the origin it is concave down and the other x-intercept is (6, 0).	1 Mark: Correct answer.
13(e) (ii)	The points $(0, 0)$, $(3, 1)$ and $(6, 0)$ satisfy $y = ax^2 + bx + c$ Sub $(0, 0)$ into $y = ax^2 + bx + c$ results in $c = 0$ Sub $(6, 0)$ into $y = ax^2 + bx + c$ results in $0 = 36a + 6b$ (1) Sub $(3, 1)$ into $y = ax^2 + bx + c$ results in $1 = 9a + 3b$ (2) Multiply eqn (2) by 2 2 = 18a + 6b (3) Eqn $(1) - (3)$ $-2 = 18a$ or $a = -\frac{1}{9}$ Sub $a = -\frac{1}{9}$ into eqn (2) $1 = 9 \times -\frac{1}{9} + 3b$	2 Marks: Correct answer. 1 Mark: Finds one correct value or shows some understanding.
14(a)	$3b = 2 \text{ or } b = \frac{2}{3}$ Therefore $a = -\frac{1}{9}$, $b = \frac{2}{3}$ and $c = 0$ $f(x) = x^{2}(3-x) = 3x^{2} - x^{3}$	2 Marks:
(1)	Stationary points $f'(x) = 0$ $6x-3x^2 = 0$ 3x(2-x) = 0 x = 0, x = 2 Stationary points are $(0,0)$ and $(2,4)$. f''(x) = 6 - 6x At $(0,0)$, $f''(0) = 6 > 0$, Minimum stationary point At $(2,4)$, $f''(1) = -6 < 0$, Maximum stationary point	Correct answer. 1 Mark: Finds one of the stationary points or recognises $6x-3x^2=0$

14(a)	x-intercepts $(y=0)$ $x^2(3-x)=0$	2 Marks:
(ii)	x = 0, x = 3	Correct answer.
TITLE THE THE TITLE THE TI	Max (2,4) Min (0,0)	1 Mark: Makes some progress towards sketching the curve.
14(a) (iii)	$f'(x) = 6x - 3x^2$ At the point $P(1,2)$ $f'(1) = 6 \times 1 - 3 \times 1^2 = 3$ Point slope formula $y - y_1 = m(x - x_1)$ y - 2 = 3(x - 1)	1 Mark: Correct answer
	y = 3x - 1 or $3x - y - 1 = 0$	
14(b) (i)	$\alpha + \beta = -\frac{b}{a} = -\frac{-3}{2} = \frac{3}{2}$	1 Mark: Correct answer
14(b) (ii)	$\alpha\beta = \frac{c}{a} = \frac{6}{2} = 3$	1 Mark: Correct answer
14(b) (iii)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= \left(\frac{3}{2}\right)^{2} - 2\times 3 = -\frac{15}{4}$	1 Mark: Correct answer
14(c)	The object comes to rest when $\dot{x} = 0$ $x = 3e^{-2t} + 10e^{-t} + 4t$	3 Marks: Correct answer.
	$\dot{x} = -6e^{-2t} - 10e^{-t} + 4$ $= -2(3e^{-2t} + 5e^{-t} - 2)$ Let $m = e^{-t}$ $-2(3m^2 + 5m - 2) = 0$	2 Marks: Finds and factorises a a quadratic equation.
	$-2(3m-1)(m+2) = 0$ Hence $3m-1=0$ or $m+2=0$ $m = \frac{1}{3} \qquad m = -2$ $e^{-t} = \frac{1}{3}$ (no solution)	1 Mark: Correctly differentiates x.
	Therefore $t = -\log_e \frac{1}{3}$ = $\log_e 3$	
· .	≈1.0986	.1

$T_3 = ar^2 = 1.25$ and	2 Marks: Correct answer.
$T_{7} = ar^{6} = 20$	Confect answer.
Divide the two equations $\frac{ar^6}{ar^2} = \frac{20}{1.25}$ $r^4 = 16$ $r = \pm 2$	1 Mark: Finds two equations using the nth term of a GP or shows some
1 ' ` `	understanding.
$a = \frac{20}{64} = \frac{5}{16}$	
$\int_0^{\frac{\pi}{8}} \sec^2 2x dx = \left[\frac{1}{2} \tan 2x \right]_0^{\frac{\pi}{8}}$ $= \frac{1}{2} \left(\tan \frac{\pi}{4} - \tan 0 \right) = \frac{1}{2}$	2 Marks: Correct answer. 1 Mark: Finds the primitive function or shows some understanding.
$y = 1 - \cos x$ $y = \sin x$ π	2 Marks: Correct answer. 1 Mark: Draws one of the curves.
$x=0$ or $x=\frac{\pi}{2}$ (from the graph)	1 Mark: Correct answer.
$A = \int_0^{\frac{\pi}{2}} [\sin x - (\mathbf{i} - \cos x)] dx + \int_{\frac{\pi}{2}}^{\pi} [1 - \cos x - \sin x] dx$	2 Marks: Correct answer.
$= \left[-\cos x - x - \sin x\right]_{0}^{\frac{\pi}{4}} + \left[x - \sin x + \cos x\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$ $= \left(0 - \frac{\pi}{2} + 1 - (-1)\right) + \left(\pi - 0 - 1 - (\frac{\pi}{2} - 1)\right)$ $= 2 - \frac{\pi}{2} + \frac{\pi}{2}$	1 Mark: Shows some understanding.
	Divide the two equations $\frac{ar^6}{ar^2} = \frac{20}{1.25}$ $r^4 = 16$ $r = \pm 2$ $T_7 = a \times (\pm 2)^6 = 20$ $a = \frac{20}{64} = \frac{5}{16}$ $\int_0^{\frac{\pi}{8}} \sec^2 2x dx = \left[\frac{1}{2} \tan 2x\right]_0^{\frac{\pi}{8}}$ $= \frac{1}{2} \left(\tan \frac{\pi}{4} - \tan 0\right) = \frac{1}{2}$ $x = 0 \text{ or } x = \frac{\pi}{2} \text{ (from the graph)}$ $A = \int_0^{\frac{\pi}{2}} [\sin x - (1 - \cos x)] dx + \int_{\frac{\pi}{2}}^{x} [1 - \cos x - \sin x] dx$ $= [-\cos x - x - \sin x]_0^{\frac{\pi}{2}} + [x - \sin x + \cos x]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $= \left(0 - \frac{\pi}{2} + 1 - (-1)\right) + \left(\pi - 0 - 1 - (\frac{\pi}{2} - 1)\right)$

		·-·
15(b) (i)	$A = P(1+r)^n$	1 Mark: Correct answer.
	$=1000(1+0.05)^{100}$	
15(b) (ii)	= \$131501.2578 \approx \$131,501.26 $A_{100} = 1000(1.05)^{100} + 1000(1.05)^{99} + + 1000(1.05)^{1}$ G.P. with $a = 1000(1.05)$, $r = 1.05$ and $n = 100$	2 Marks: Correct answer.
	$A_{100} = \frac{1000(1.05)[1.05^{100} - 1]}{1.05 - 1}$ $= 2740526.415 $\approx $2,740,526.42$	1 Mark: Identifies a G.P. with 100 terms.
15(c) (i)	AC = (3-x) metres	1 Mark: Correct answer.
15(c) (ii)	$(3-x)^{2} = h^{2} + x^{2}$ $h^{2} = 9 - 6x + x^{2} - x^{2}$ $h = \sqrt{9 - 6x}$ $3 - x$	2 Marks: Correct answer.
	$h = \sqrt{9-6x}$ $(h > 0 \text{ as } h \text{ is a height})$ $A = \frac{1}{2}bh$ $= 0.5x\sqrt{9-6x} \text{ m}^2$	1 Mark: Finds the height of the triangle or shows some understanding.
15(c) (iii)	Maximum occurs when $\frac{dA}{dx} = 0$	3 Marks: Correct answer.
	$A = 0.5x\sqrt{9 - 6x}$ $\frac{dA}{dx} = 0.5 \left[x \times \frac{1}{2} (9 - 6x)^{\frac{1}{2}} \times -6 + (9 - 6x)^{\frac{1}{2}} \times 1 \right]$	2 Marks: Finds $x = 1$
· Anti-	$= \frac{1}{2}(9 - 6x)^{-\frac{1}{2}} \left[-3x + (9 - 6x)^{1} \right]$ $= \frac{-9x + 9}{2\sqrt{9 - 6x}} = \frac{9(1 - x)}{2\sqrt{9 - 6x}}$ Now $\frac{dA}{dx} = \frac{9(1 - x)}{2\sqrt{9 - 6x}} = 0$	1 Mark: Calculates the first derivative or has some understanding of the problem.
	$\therefore x=1$	
	Test whether $x = 1$ is a maximum	
	$x = 0.9, \ \frac{dA}{dx} = \frac{9(1 - 0.9)}{2\sqrt{9 - 6 \times 0.9}} > 0$	
	$x = 1.1, \ \frac{dA}{dx} = \frac{9(1 - 1.1)}{2\sqrt{9 - 6 \times 1.1}} < 0$	
	Maximum value occurs when $x = 1$.	-

15(c) (iv)	$A = 0.5x\sqrt{9 - 6x}$ = 0.5×1\sqrt{9-6×1} = 0.5\sqrt{3} m ²	1 Mark; Correct answer.
16(a) (i)	$x = \int (1 - 2\sin 2t) dt$ $= t + \cos 2t + C$ Initially $t = 0$ and $x = 0$ $0 = 0 + \cos(2 \times 0) + C \rightarrow C = -1$ $x = t + \cos 2t - 1$	2 Marks: Correct answer. 1 Mark: Integrates the velocity function.
16(a) (ii)	When $t = \frac{\pi}{3}$ then $x = \frac{\pi}{3} + \cos\left(2 \times \frac{\pi}{3}\right) - 1$ = $\frac{\pi}{3} - \frac{1}{2} - 1 = \frac{\pi}{3} - \frac{3}{2}$	1 Mark: Correct answer
16(a) (iii)	$a = \frac{d}{dt}(1 - 2\sin 2t)$ $= -4\cos 2t$	1 Mark: Correct answer
16(a) (iv)	$a = -4\cos 2t \text{ for } 0 \le t \le \pi$ a $4^{\frac{1}{2}}$ -2 -4 π	1 Mark: Correct answer
16(a) (v)	From the graph or $-1 \le \cos 2t \le 1$ ($-4 \le -4 \cos 2t \le 4$) Maximum acceleration is 4 m/s ²	1 Mark: Correct answer
16(b) (i)	Initially $t = 0$ and $R = 8000$ $R = R_0 e^{-kt}$ $8000 = R_0 e^{-k \times 0}$ $R_0 = 8000$ Also $t = 1$ and $R = 7000$ $7000 = 8000 e^{-k \times 1}$ $e^{-k} = \frac{7000}{8000}$ $-k = \log_e \frac{7}{8}$	2 Marks: Correct answer. 1 Mark: Finds the correct value for R ₀ or k.
	$k = -\log_e \frac{7}{8} = 0.13353139$	

16(b)	We need to find R when $t=10$	1 Mark: Correct
(ii)	$R = 8000e^{\log_{\epsilon} \frac{7}{8} \times 10}$	answer.
	= 2104.604609 ≈ 2105 bq	
16(b) (iii)	We need to find t when $R = 50$.	2 Marks: Correct answer.
(111)	$50 = 8000e^{-kxt}$	Correct answer:
	$e^{-u} = \frac{1}{160}$	
	_	
	$-kt = \log_e \frac{1}{160}$	
	$t = -\frac{1}{k} \log_{\epsilon} \frac{1}{160}$	1 Mark: Makes some progress
	K 100	towards the
	$=\log_e \frac{1}{160} \div \log_e \frac{7}{8}$	solution.
	= 38.0073458 ≈ 38 years	
16(c)	В	2 Marks:
(i)		Correct answer.
	D	
		1 Mark: Draws
	h° N	the diagram and makes some
	AD PC 4C	progress
i	$\cos \theta = \frac{AD}{AC}$ $\tan \theta = \frac{BC}{AC}$ $\cos \theta = \frac{AC}{AB}$	towards the solution.
	$AD = AC\cos\theta$ $BC = AC\tan\theta$ $AB = AC\sec\theta$	Solution.
	Now $8AD + 2BC = 7AB$	
	$8AC\cos\theta + 2AC\tan\theta = 7AC\sec\theta$	
	$8\cos\theta + 2\tan\theta = 7\sec\theta$	
16(c)	$8\cos\theta + 2\tan\theta = 7\sec\theta$	2 Marks:
(ii)	$8\cos\theta + \frac{2\sin\theta}{\cos\theta} = \frac{7}{\cos\theta}$	Correct answer.
	$\cos\theta \cos\theta \\ 8\cos^2\theta + 2\sin\theta = 7$	1 Mark: Finds
	$8\cos^2\theta + 2\sin\theta = 7$ $8(1 - \sin^2\theta) + 2\sin\theta = 7$	the quadratic
	$8(1-\sin^2\theta) + 2\sin\theta = 7$ $8\sin^2\theta - 2\sin\theta - 1 = 0$	equation in $\sin \theta$ or shows
	$8\sin^{2}\theta - 2\sin\theta - 1 = 0$ $(2\sin\theta - 1)(4\sin\theta + 1) = 0$	some
	$2\sin\theta - 1 = 0 \qquad \text{or} \qquad 4\sin\theta + 1 = 0$	understanding of
		the problem.
	$\sin\theta = \frac{1}{2} \qquad \qquad \sin\theta = -\frac{1}{4}$	
	$\theta = 30^{\circ}$ $\theta = 165^{\circ}31^{\circ}$	
	Now $0^{\circ} \le \theta \le 90^{\circ}$ as θ is in a right-angled triangle.	
	$\therefore \theta = 30^{\circ}$	