対関	Δ	CF	Exar	nina	ation	1
24.35	\boldsymbol{H}	UL.	LXai	111111	นเบเ	ĸ

Student Name:		

2014 YEAR 11 HALF YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 6-8

Total marks - 50

Section I

5 marks

- Attempt Questions 1-5
- Allow about 8 minutes for this section

Section II

45 marks

- Attempt Questions 6-8
- · Allow about 1 hour 22 minutes for this section

Preliminary Mathematics

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^4 \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section 1

5 marks

Attempt Questions 1 - 5

Allow about 8 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

- 1 What is the solution to the inequality $|x-3| \le 1$?
 - (A) $x \le 2$ or $x \ge 4$
 - (B) $x \le 2$ or $x \le 4$
 - (C) $x \ge 2$ or $x \ge 4$
 - (D) $x \ge 2$ or $x \le 4$
 - correct to three significant figures.
 - (A) 1.21
 - (B) 1.211
 - (C) 1.33
 - (D) 1.333
- 3 In the diagram below, OR and OQ bisect $\angle PRQ$ and $\angle PQR$ respectively. $\angle RPQ = 70^{\circ}$

Not to scale

What is the size of $\angle ROQ$?

- (A) 70°
- (B) 100°
- (C) 125°
- (D) 140°

- 4 Simplify $\frac{(2ab^3)^3}{2a^2b^2}$
 - (A) ab^7
 - (B) 2ab7
 - (C) 4ab4
 - (D) $4ab^7$
- 5 Which graph best represents y = |x| 1?

Section II

45 marks

Attempt Questions 6' 8

Allow about 1 hours and 22 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 6 (15 marks)

Marks

(a) Solve

(i)
$$y-3=\frac{3y}{2}+2$$

1

(ii)
$$6(x+2) = 5(x-6)$$

1

(b) Express
$$\frac{1}{3-\sqrt{5}}$$
 in the form $a+b\sqrt{5}$, where a and b are rational numbers.

(c) Factorise completely

(i)
$$x^2 - 25$$

1

(ii)
$$27 - 8m^3$$

1

(iii)
$$xa+xb-3a-3b$$

1

(d) Is the function
$$f(x) = x^3 - 6x$$
 even, odd or neither?

2

(e) Express
$$(418.6)^2 \div 0.0179$$
 in scientific notation correct to four significant figures.

(f) Solve the quadratic equation $x^2 - 6x + 7 = 0$.

2

(g) E is a point inside rectangle ABCD. EC = EB

i) Prove that $\triangle DEC = \triangle ABE$.

2

(ii) Prove that $\triangle AED$ is isosceles.

1

1

Question 7 (15 marks)

Marks

(a) Simplify
$$\frac{x^2 - 3x}{y^2 - 6y + 9} \div \frac{x}{y - 3}$$

2

(b) The function y = f(x) is defined as follows:

$$f(x) = \begin{cases} -2 \text{ for } x \le -1 \\ x+1 \text{ for } -1 < x < 2 \\ x^2+1 \text{ for } x \ge 2 \end{cases}$$

(i) Find the value of f(-1).

1

(ii) Write an expression for $f(a^2+3)$?

1

(iii) Sketch the function y = f(x).

2

(c) BF is parallel to CG, BC = EC and $\angle ABE = 118^{\circ}$.

(i) Show that $\angle BEC = 62^{\circ}$.

2

(ii) Hence or otherwise, show that CG bisects $\angle DCE$.

- 2
- (d) Given that $f(x) = 4x^2 7$, determine the values of x for which f(x) = 137

(e) Make neat sketches of the following equations on separate sets of axes. Mark clearly the essential features of each graph.

$$y = x^2 + 1$$

(ii)
$$x^2 + (y+3)^2 = 36$$

(iii)
$$y = 2^{-x}$$

Question 8 (15 marks)

Marks

- (a) Draw a sketch showing the region on the number plane where the inequalities $x^2 + y^2 \le 4$ and $x \le 1$ hold simultaneously.
- 3

2

(b) Solve the simultaneous equations.

$$x-2y=4$$

$$2x+y=3$$

(c) Expand then simplify each of the following.

(i)
$$10-(y-4)^2$$

1

(ii)
$$8p(2p+3q)-6p(3p-4q)$$

1

(iii)
$$3(4a-7)(4a+7)-2(2a-5)^2$$

1

(d) Solve
$$9^x - 10(3^x) + 9 = 0$$

2

(e) In diagram, $QT \perp SP$, $\angle PRS = 90^\circ$, PT = 4, RS = 7 and PQ = 5.

(i) Prove that $\triangle PQT$ is similar to $\triangle PRS$.

3

(ii) Find the length of QR. Give reasons for your answer.

2

End of paper

ACE Examination 2014
Year 11 Mathematics Half Yearly Examination
Worked solutions and marking guidelines

Section I			
	Solution	Criteria	
1	$ x-3 \le 1$ $x-3 \le 1$ and $x-3 \ge -1$ $x \le 4$ $x \ge 2$	1 Mark: D	
2	$\sqrt[3]{\frac{46.12 \times 188.63}{(78.45)^2 - (35.50)^2}} = 1.211362677 \approx 1.21$	1 Mark: A	
3	$x+x+y+y+70=180$ (angle sum of a $\triangle PQR$ is 180) 2x+2y=110 x+y=55 $x+y+\angle ROQ=180$ (angle sum of a $\triangle ROQ$ is 180) $\angle ROQ=180-(x+y)$ $\angle ROQ=180-55=125$	1 Mark: C	
4	$\frac{(2ab^3)^3}{2a^2b^2} = \frac{8a^3b^9}{2a^2b^2} = 4ab^7$	1 Mark: D	
5	y 4 3 2 1 1 1 2 3 4 1 2 3 4	1 Mark: A	

Section II			
	Solution	Criteria	
6(a) (i)	$2 \times (y-3) = \left(\frac{3y}{2} + 2\right) \times 2$	1 Mark: Correct answer	
]	2y-6=3y+4		
	y = -10		
6(a) (ii)	6(x+2) = 5(x-6) $6x+12 = 5x-30$	1 Mark: Correct answer	
(4)	x = -42		
6(b)	$\frac{1}{3-\sqrt{5}} = \frac{1}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$	2 Marks: Correct answer.	
	$=\frac{3+\sqrt{5}}{4}$	1 Mark;	
	$=\frac{3}{4}+\frac{1}{4}\sqrt{5}$	Recognises the significance of the conjugate.	
6(c) (i)	$x^2 - 25 = (x+5)(x-5)$	1 Mark: Correct answer	
6(c)	$27 - 8m^3 = 3^3 - (2m)^3$	1 Mark: Correct	
(ii)	$= (3-2m)(9+6m+4m^2)$	answer	
6(c)	xa+xb-3a-3b = x(a+b)-3(a+b)	1 Mark: Correct	
(ii)	=(a+b)(x-3)	answer	
6(d)	$f(x) = x^3 - 6x$	1 Mark: Correct	
	$f(-x) = (-x)^3 - 6(-x)$	answer	
	$=-\left(x^{3}-6x\right)$		
	=-f(x)	,	
	Function is odd		
6(e)	$(418.6)^2 \div 0.0179 = 9789159.777$	2 Marks:	
	≈9.789×10 ⁶	Correct answer.	
		1 Mark: Finds 9789159.77	
6(f)	$x^2 - 6x + 7 = 0$	2 Marks:	
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 7}}{2 \times 1}$ $= \frac{6 \pm \sqrt{8}}{2}$	Correct answer,	
	$x = {2 \times 1}$	1 Mark: Uses	
	$=\frac{6\pm\sqrt{8}}{12}$	quadratic	
		formula with one correct	
	$=3\pm\sqrt{2}\approx 4.41 \text{ or } 1.59$	value.	

6(g) (i)	$\triangle BCE$ is isosceles (two sides are equal, $EC = EB$) $\angle ECB = \angle EBC$ (base angles of an isosceles triangle are equal)	2 Marks: Correct answer.
	$\angle BCB = \angle BBC$ (base angles of an isosceres triangle are equal) $\angle DCB = \angle ABC = 90^{\circ} \text{ (all angles in a rectangle are equal)}$ $\angle DCE = \angle ABE \text{ (adjacent angles)}$ $Consider \Delta DEC \text{ and } \Delta ABE$ $EC = EB \text{ (given)}$ $DC = AB \text{ (opposite sides of a rectangle are equal)}$ $\angle DCE = \angle ABE \text{ (shown above)}$ $\Delta DEC \equiv \Delta ABE \text{ (SAS)}$	1 Mark: One correct statement
6(g) (ii)	DE = AE (matching sides in congruent triangles) $\therefore \Delta AED$ is isosceles (two sides are equal)	1 Mark: Correct answer
7(a)	$\frac{x^2 - 3x}{y^2 - 6y + 9} \div \frac{x}{y - 3} = \frac{x(x - 3)}{(y - 3)^2} \times \frac{(y - 3)}{x}$ $= \frac{(x - 3)}{(y - 3)}$	2 Marks: Correct answer. 1 Mark: Factorises one term
7(b) (i)	f(-1) = -2	1 Mark: Correct answer
7(b) (ii)	$f(a^2+3) = (a^2+3)^2+1$ $(a^2+3 \ge 3 \text{ for all values of } a)$ = a^4+6a^2+10	1 Mark: Correct answer
7(b) (iii)	$y = x^{2} + 1$ $y = x^{2} + 1$ $y = x^{2} + 1$ $y = x + 1$	2 Marks: Correct answer. 1 Mark: Sketches one correct graph.
7(c) (i)	$\angle ABE + \angle CBE = 180^\circ$ (Straight line measures 180°) $118^\circ + \angle CBE = 180^\circ$ $\angle CBE = 62^\circ$ $\triangle BCE$ is an isosceles triangle (two sides equal, $BC = EC$). $\therefore \angle CBE = \angle BEC$ (base angles in isosceles triangle are equal) Hence $\angle BEC = 62^\circ$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.

7(c) (ii)	∠BEC = ∠ECG = 62° (alternate angles, equal BF //CG) ∠CBE = ∠DCG = 62° (corresponding angles, equal BF //CG) ∴ ∠ECG = ∠DCG = 62° Hence CG bisects ∠DCE.	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
7(d)	$f(x) = 4x^{2} - 7 = 137$ $4x^{2} = 144$ $x^{2} = 36$ $x = \pm 6$	2 Marks; Correct answer, 1 Mark; Finds one solution or shows some understanding.
7(e) (i)	4 3 2 -4 -3 -2 -1 1 2 3 4	1 Mark: Correct answer
7(e) (ii)	y 3 -6 -4 -2 2 4 6 -3 -6 -6 -9 Circle centre $(0, -3)$ and radius 6	1 Mark: Correct answer
7(e) (iii)	y 5 4 3 2 1	1 Mark: Correct answer

8(a)	$x^2 + y^2 = 4$ is a circle centre (0,0) and radius 2 x = 1 is a vertical line passing through (1,0)	3 Marks: Correct answer. 2 Marks: Graphs one region correctly 1 Mark: Shows some understanding
8(b)	x-2y=4 (1) 2x+y=3 (2) Multiply equation (2) by 2 4x+2y=6 (3)	2 Marks: Correct answer.
	Equation (1) + (3) 5x=10 x=2 Substitute $x=2$ into equation (1)	1 Mark: Finds one of the solutions.
	2-2y=4 $-2y=2$ $y=-1$ Solution is $x=2$ and $y=-1$.	
8(c) (i)	$10 - (y-4)^2 = 10 - (y^2 - 8y + 16)$ $= -y^2 + 8y - 6$	1 Mark: Correct answer
8(c) (ii)	$8p(2p+3q)-6p(3p-4q) = 16p^2 + 24pq - 18p^2 + 24pq$ $= -2p^2 + 48pq$	1 Mark: Correct answer
8(c) (iii)	$3(4a-7)(4a+7)-4(2a-5)^{2} = 3(16a^{2}-49)-4(4a^{2}-20a+25)$ $= 48a^{2}-147-16a^{2}+80a-100$ $= 32a^{2}+80a-247$	1 Mark: Correct answer
8(d)	$(3^{x})^{2} - 10(3^{x}) + 9 = 0$ Let $m = 3^{x}$ $m^{2} - 10m + 9 = 0$ $(m - 9)(m - 1) = 0$ $m = 9 \text{ or } m = 1$ $3^{x} = 3^{2} \qquad 3^{x} = 3^{0}$	2 Marks: Correct answer. 1 Mark: Identifies a reduction to a quadratic.
	x=2 $x=0$	

8(e)	In ΔPQT	3 Marks:
(i)	Let $x = \angle QPT$	Correct answer.
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\angle QTP = 90 \text{ (given } QT \perp SP)$ $\angle PQT + \angle QPS + \angle QTP = 180^{\circ}$ (angle sum of a triangle is 180) $\angle PQT + x + 90 = 180^{\circ}$ $\angle PQT = 90 - x$	2 Marks: Makes significant progress towards the solution.
1 N	In $\triangle PRS$ $\angle RSP + 90 + x = 180$ (angle sum of a triangle is 180°) $\angle RSP = 90 - x$ $\therefore \triangle PQT$ is similar to $\triangle PRS$ (equiangular)	1 Mark: One relevant property stated or implied.
8(e) (ii)	Use Pythagoras theorem to find QT in ΔPQT $QR^2 = QT^2 + PT^2$	2 Marks: Correct answer.
	$5^{2} = QT^{2} + 4^{2}$ $QT = 3$ Corresponding sides are in proportion with similar triangles. $\frac{RP}{RS} = \frac{PT}{QT} \text{ or } \frac{RP}{7} = \frac{4}{3}$ $RP = \frac{28}{3} = 9\frac{1}{3}$ Therefore $QR = 9\frac{1}{3} - 5$ $= 4\frac{1}{3}$	1 Mark: Uses corresponding sides in similar triangles with some correct values.
	$=4\frac{1}{3}$: