(1) (1) (2)	ACE	Exami	nations

Student Name:	•	

2014
YEAR 11
YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- · Reading time 5 minutes
- Working time 1.5 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in Questions 6-8

Total marks - 50

Section 1

5 marks

Attempt Questions 1-5

Allow 10 minutes for this section

Section 2

45 marks

Attempt Questions 6-8

Allow 1 hour and 20 minutes for this section

Preliminary Mathematics Extension 1

STANDARD INTEGRALS

$$\int_{x}^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int_{-x}^{1} dx = \ln x, \ x > 0$$

$$\int e^{\alpha x} dx \qquad \qquad = \frac{1}{a} e^{\alpha x}, \ \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_{10} x$, x > 0

Section I

5 marks

Attempt Questions 1 - 5

Allow about 10 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

- 1 What is the solution to the inequality $(4-x) \ge \frac{3}{x}$?
 - (A) x < 0 or $1 \le x \le 3$
 - (B) $x \ge 3$ or $0 < x \le 1$
 - (C) $x > 0 \text{ or } -3 \le x \le -1$
 - (D) $x \le -3 \text{ or } -1 \le x < 0$
- 2 P(x) is an odd polynomial. When P(x) is divided by (x-1) the remainder is 3. What is the remainder when P(x) is divided by (x+1)?
 - (A) -3
 - (B) -1
 - (C) 1
 - (D) 3
- 3 The curves $y = \sqrt{x} + 10$ and $y = x^2 4$ meet at the point (4,12). What is the acute angle between the tangents to curves at this point?
 - (A) 37°
 - (B) 49°
 - (C) 69°
 - (D) 71°
- 4 What is the equation of the normal to x = 2t, $y = t^2$ at the point t = 3?
 - (A) x+3y-21=0
 - (B) x+3y-33=0
 - (C) 3x-y-9=0
 - (D) 3x-y-27=0

- 5 Point P is due south of a tower and the angle of elevation from P to the top of the tower is 40°. Another point Q is a bearing 190° from the tower and the angle of elevation from Q to the top of the tower is 43°. The distance PQ is 150 m. Which of the following are the correct expressions for OP and OQ?
 - (A) $OP = h \tan 40^\circ$ and $OQ = h \tan 43^\circ$
 - (B) $OP = 150 \tan 40^\circ$ and $OQ = 150 \tan 43^\circ$
 - (C) $OP = \frac{\tan 40^\circ}{h}$ and $OQ = \frac{\tan 43^\circ}{h}$
 - (D) $OP = \frac{h}{\tan 40^{\circ}} \text{ and } OQ = \frac{h}{\tan 43^{\circ}}$

2

Section II

45 marks

Attempt Questions 6' 8 Allow about 1 hour and 20 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 6 (15 marks)	Marks
(a) Find the acute angle between the lines $y=1-3x$ and $2x-3y-4=0$. Answer to the nearest degree.	2

(b) Solve $\sin \theta + 6\cos^2 \theta = 5$ for $0^\circ \le \theta \le 360^\circ$.

PQRS is a cyclic quadrilateral. SR is produced to T and $\angle PRS = \angle QRT$.

(i) Explain why
$$\angle PQS = \angle PRS$$
. 1
(ii) Hence show that $PS = QS$. 3

Hence show that PS = QS.

(d) Find the number of ways in which a committee of 3 people can be chosen

from 4	teachers and 5 students.	
(i)	Without restriction.	1
(ii)	Exactly one student.	1
(iii)	Exactly one teacher.	1 .

(e) A(-4,1) and B(2,4) are divided internally by C in the ratio 2:1 and externally by D in the ratio 2:1. P(x, y) is a variable point that moves so that PA = 2PB.

(i) Find the coordinates of C. Find the coordinates of D. (ii) Show that the locus of P is a circle.

1

Marks Question 7 (15 marks) (a) Show that the exact value of $\tan 67.5^{\circ}$ is $1+\sqrt{2}$. 2 (b) Solve the inequality $\frac{3-2x}{x-3} \le 4$. 3 (c) The polynomial $x^3 - kx - 2 = 0$ has roots α , α and β . Find the value of $2\alpha + \beta$. 1 (i) Find the value of $\alpha^2 \beta$. (ii) 2 What is the value of k? (d) Prove that y = mx + b is a tangent to $x^2 = 4ay$ if $am^2 + b = 0$. 3 State the remainder theorem for polynomials. 1 (e) (i) Find a if $x^2 + 4x + 5a$ is divided by x and the remainder is -10. 1 (ii)

Find b if x-1 is a factor of $2x^3 + x^2 + 2x + b$.

Question 8	(15 marks)

Marks

3

3

2

(a) AD is a diameter of the circle. A tangent at A meets a chord DC produced to B. Prove that $AB^2 = BD \times BC$

- (b) Use the t-method to solve the equation $\sin \theta + 2\cos \theta + 2 = 0$ for $0 \le \theta \le 360$.
- (c) The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$ with a focus S. The line SP is produced to point R such that P is the midpoint of SR.
 - (i) Show that R has the coordinates of $(4ap, 2ap^2 a)$
 - Hence show that the locus of R as P moves on the parabola is $x^2 = 8a(y+a)$. Find the focal length and vertex of this parabola.
- (d) Express $P(x) = x^4 3x^3 2x^2 5x$ in the form P(x) = x(x-4)Q(x) + R(x).
- (e) (i) Express √3 sin 2θ + cos 2θ in the form A sin(2θ + α) for 0 ≤ θ ≤ 360°
 (ii) Hence or otherwise find the maximum value of √3 sin 2θ + cos 2θ.

ACE Examination 2014

Year 11 Mathematics Extension 1 Yearly Examination

Worked solutions and marking guidelines

Sectio	n I	
•	Solution	Criteria
1	$(4-x) \ge \frac{3}{x} \qquad x \ne 0$ $x^2 \times (4-x) \ge \frac{3}{x} \times x^2$ $x^2 (4-x) \ge 3x$ $x^2 (4-x) - 3x \ge 0$ $x[x(4-x)-3] \ge 0$ $x(x^2 - 4x + 3) \le 0$ $x(x-3)(x-1) \le 0$ Critical points are 0, 1 and 3 Test values in each region $x < 0 \text{ and } 1 \le x \le 3$	1 Mark: A
2	Remainder theorem $P(1) = 3$ Odd function $P(-x) = -P(x)$ Therefore $P(-1) = -P(1) = -3$	1 Mark: A
3	$y = \sqrt{x} + 10 y = x^{2} - 4$ $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \frac{dy}{dx} = 2x$ At (4,12) then $m_{1} = \frac{1}{4}$ and $m_{2} = 8$ $\tan \theta = \left \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} \right $ $= \left \frac{\frac{1}{4} - 8}{1 + \frac{1}{4} \times 8} \right $ $= \frac{31}{12}$ $\theta = 68.8387401 \approx 69^{\circ}$	1 Mark; C

		·	
		Parabola is $x^2 = 4y$	
.		To find the gradient of the tangent	
		$y = \frac{1}{4}x^2 \text{ and } \frac{dy}{dx} = \frac{1}{2}x$	
-		At (6,9) $\frac{dy}{dx} = \frac{1}{2} \times 6 = 3$	
	4	Gradient of the normal is $-\frac{1}{3}$	1 Mark; B
		Equation of the normal at (6,9)	
1		$y - y_1 = m(x - x_1)$	
		$y-9=-\frac{1}{3}(x-6)$	
		3y-27 = -x+6	
		x+3y-33=0	•
	5	W N N N N N N N N N N N N N N N N N N N	1 Mark: D
		In ΔTOQ	
		$\tan 40^\circ = \frac{h}{OA} \qquad \tan 43^\circ = \frac{h}{OQ}$	
		$OP = \frac{h}{\tan 40^{\circ}} \qquad OQ = \frac{h}{\tan 43^{\circ}}$	

Section	n II	
6(a)	For $y=1-3x$ then $m_1 = -3$ For $2x-3y-4=0$ then $m_2 = \frac{2}{3}$	2 Marks: Correct answer.
	$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $= \frac{-3 - \frac{2}{3}}{1 + -3 \times \frac{2}{3}} = \frac{-\frac{11}{3}}{-1} = \frac{11}{3}$ $\theta = 74.7448813 \approx 75^{\circ}$	1 Mark: Uses the angle between two lines formula and one correct gradient.
6(b)	$\sin \theta + 6\cos^2 \theta = 5$ $\sin \theta + 6(1 - \sin^2 \theta) = 5$	2 Marks: Correct answer.
ł	$6\sin^2\theta - \sin\theta - 1 = 0$ $(2\sin\theta - 1)(3\sin\theta + 1) = 0$ $2\sin\theta = 1 \qquad \text{or } 3\sin\theta = -1$ $\sin\theta = \frac{1}{2} \text{ (1st \& 2nd quad)} \qquad \sin\theta = -\frac{1}{3} \text{ (3rd \& 4th quad)}$ $\theta = 30^\circ, 150^\circ \qquad \theta = 199^\circ, 341^\circ$	1 Mark: Finds and factorises the quadratic equation.
6(c) (i)	$\angle PQS = \angle PRS$ (angles in the same segment standing on the same arc are equal).	1 Mark: Correct answer.
6(c) (ii)	$\angle QRT = \angle QPS$ (exterior angle of a cyclic quadrilateral is equal to the interior opposite angle). $\angle PRS = \angle QRT$ (given). Hence $\angle QPS = \angle PRS$ (both equal to $\angle QRT$) $\angle QPS = \angle PQS$ (from part (i)) $\therefore \Delta PSQ$ is an isosceles triangle (two angles are equal) $\therefore PS = QS$ (sides opposite the equal angles in ΔPSQ)	3 Marks: Correct answer. 2 Marks: Makes significant progress. 1 Mark: States the exterior angle of a cyclic quadrilateral theorem.
6(d) (i)	Unordered selection of 3 from 9. ${}^{9}C_{3} = 84$	1 Mark: Correct answer.
6(d) (ii)	Unordered selection of 2 teachers from 4. Unordered selection of 1 student from 5. ${}^4C_2 \times {}^5C_1 = 30$	1 Mark: Correct answer.
6(d) (iii)	Unordered selection of 1 teacher from 4. Unordered selection of 2 students from 5. ${}^{4}C_{1} \times {}^{5}C_{2} = 40$	1 Mark: Correct answer.

r		I
6(e) (i)	$x = \frac{mx_2 + nx_1}{m + n} \qquad y = \frac{my_2 + ny_1}{m + n}$	1 Mark: Correct answer.
 	$= \frac{2 \times 2 + 1 \times -4}{2 + 1} = 0 \qquad = \frac{2 \times 4 + 1 \times 1}{2 + 1} = 3$]
	The coordinates of point are C are $(0,3)$	-
6(e) (ii)	$x = \frac{mx_2 + nx_1}{m + n} \qquad y = \frac{my_2 + ny_1}{m + n}$	1 Mark: Correct answer.
	$= \frac{-2 \times 2 + 1 \times -4}{-2 + 1} = 8 \qquad = \frac{-2 \times 4 + 1 \times 1}{-2 + 1} = 7$	
	The coordinates of point are D are (8,7)	
6(e) (iii)	$PA = 2PB$ $\sqrt{(x-4)^2 + (y-1)^2} = 2 \times \sqrt{(x-2)^2 + (y-4)^2}$	2 Marks: Correct answer.
	$(x+4)^2 + (y-1)^2 = 4\left[(x-2)^2 + (y-4)^2\right]$	1 Mark: Uses
	$x^{2} + 8x + 16 + y^{2} - 2y + 1 = 4[x^{2} - 4x + 4 + y^{2} - 8y + 16]$	distance formula correctly and
	$x^2 + 8x + y^2 - 2y + 17 = 4x^2 - 16x + 4y^2 - 32y + 80$	makes some progress towards
	$3x^2 - 24x - 3y^2 - 30y + 63 = 0$	the solution.
	$x^2 - 8x - y^2 - 10y + 21 = 0$	
	$(x-4)^2-16-(y-5)^2-25+21=0$	
	$(x-4)^2 - (y-5)^2 = 20$	
	$(x-4)^2 - (y-5)^2 = 4\sqrt{5}$	
	Locus of P is a circle with centre (4,5) and radius $4\sqrt{5}$	
7(a)	Let $\theta = 67.5^{\circ}$	2 Marks: Correct answer.
	$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$	answer.
	1 1111 0	1 Mark: Uses the
	$\tan 135^\circ = \frac{2 \tan 67.5^\circ}{1 - \tan^2 67.5^\circ}$	double angle formula or
	$-1 = \frac{2 \tan 67.5^{\circ}}{1 - \tan^{2} 67.5^{\circ}}$	shows some
	1 1411 07.5	understanding.
	$-1 + \tan^2 67.5 = 2 \tan 67.5^\circ$	
	$\tan^2 67.5 - 2 \tan 67.5^\circ - 1 = 0$	
	$\tan 67.5^{\circ} = \frac{2 \pm \sqrt{2^2 - 4 \times 1 \times -1}}{2}$	
	$=\frac{2\pm\sqrt{8}}{2}=\frac{2\pm2\sqrt{2}}{2}$	
	=1±√2	
	$=1+\sqrt{2}$ (67.5° is acute)	

7(b)	$(x-3)^2 \times \frac{3-2x}{x-3} \le 4 \times (x-3)^2 \qquad x \ne 3$	3 Marks: Correct answer.
	$(x-3)(3-2x) \le 4(x-3)^{2}$ $(x-3)(3-2x)-4(x-3)^{2} \le 0$ $(x-3)[(3-2x)-4(x-3)] \le 0$ $(x-3)(15-6x) \le 0$ $3(x-3)(2x-5) \ge 0$	2 Marks: Finds one correct region or makes significant progress.
	Critical points are $2\frac{1}{2}$ and $3 (x \neq 3)$	1 Mark: Multiplies both sides of the inequality by $(x-3)^2$ or finds a critical point.
	Test values in each region	
	Solution is $x \le 2\frac{1}{2}$ or $x > 3$	
7(c) (i)	$\alpha + \alpha + \beta = -\frac{b}{a} = \frac{0}{1}$ $2\alpha + \beta = 0 (1)$	1 Mark; Correct answer.
7(c) (ii)	$\alpha\beta\gamma = -\frac{d}{a} = -\frac{-2}{1} = 2$ $\alpha^2\beta = 2 (2)$	1 Mark: Correct answer.
7(c) (iii)	From eqn(1) $\beta = -2\alpha$ and substitute into eqn(2)	2 Marks: Correct
(111)	$\alpha^2 \times -2\alpha = 2$	answer.
	$\alpha^3 = -1 \text{ or } \alpha = -1$	I Mark: Shows
	Substituting $\alpha = -1$ into eqn(2) then $\beta = 2$ $\alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a} = \frac{-k}{1}$	some understanding of the problem.
	$\alpha^2 + 2\alpha\beta = -k$	
	$(-1)^2 + 2 \times -1 \times 2 = -k$	
<u></u>	k=3]

7(d)	A tangent to a parabola intersects at one point. Substitute $mx+b$ for y into $x^2 = 4ay$	3 Marks: Correct answer.
		}
	$x^2 = 4a(mx+b)$	2 Marks: Makes
	$\int x^2 - 4amx - 4ab = 0$	significant
	Quadratic equation has one solution if $\Delta = 0$	progress.
	$\Delta = b^2 - 4ac$	1 Mark: Solves
	$= (-4am)^2 - 4 \times 1 \times -4ab$	the equations
	$=16a(am^2+b)=0$	simultaneously.
	Therefore $am^2 + b = 0$ ($a \ne 0$ otherwise no parabola)	
7(e) (i)	The remainder theorem states that when a $P(x)$ is divided by $(x-a)$ the remainder is $P(a)$.	1 Mark: Correct answer.
7(e)	$P(x) = x^2 + 4x + 5a$	1 Mark: Correct
(ii)	$P(0) = 0^2 + 4 \times 0 + 5a = -10$ ((x-0) has a remainder of -10)	answer.
	a=-2	
7(e)	$P(x) = 2x^3 + x^2 + 2x + b$	1 Mark: Correct
(iii)	$P(1) = 2 \times 1^{3} + 1^{2} + 2 \times 1 + b = 0 \text{ ((x-1) is a factor of } P(x))$	answer.
	2+1+2+b=0	
	b = -5	
8(a)		3 Marks: Correct
(i)		answer.
		2 Marks: Makes significant
		progress.
	$C \longrightarrow B$	F8
	$\angle ACD = 90^{\circ}$ (angle in a semi-circle)	1 Mark: Applies
	$\angle BCA + \angle ACD = 180^{\circ}$ (straight angle)	a relevant circle theorem.
	$\angle BCA + 90^\circ = 180^\circ \text{ or } \angle BCA = 90^\circ$	theorem.
	$\angle DAB = 90^{\circ}$ (tangent to a circle is perpendicular to the radius drawn to the point of contact)	
	Consider $\triangle ABD$ and $\triangle ABC$	
	$\angle DAB = \angle BCA$ (from above)	,
	$\angle CDA = \angle CAB$ (angle between a tangent and a chord is equal to the angle in the alternate segment)	
	$\triangle ABD$ is similar to $\triangle ABC$ (equiangular)	
	$\frac{AB}{BD} = \frac{BC}{AB}$	
	$AB^2 = BD \times BC$	

8(b)	$\sin\theta + 2\cos\theta + 2 = 0$	3 Marks: Correct
		answer.
	$\sin\theta + 2\cos\theta + 2 = \frac{2t}{1+t^2} + 2 \times \frac{1-t^2}{1+t^2} + 2$	
		2 Marks: Finds
	$=\frac{2t+2(1-t^2)+2(1+t^2)}{1+t^2}$	$\theta = 233'8' \text{ or }$
	$=\frac{2t+2-2t^2+2+2t^2}{1+t^2}$	makes significant
	17;	progress.
	$=\frac{2(t+2)}{1+t^2}=0$	
	***	1 Mark: Uses 't'
	Hence $t = -2$	results correctly or recognises
	$\tan\frac{\theta}{2} = -2$	that 180° is a
	θ 116.5652 22.206.656	solution.
	$\frac{\theta}{2}$ = 116.5652 or 296.656	
1 .	$\theta = 233.130 = 233^{\circ}8^{\circ}$	
	Testing boundaries $\theta = 180^{\circ}$ is a solution.	
	There $\theta = 180^\circ$ and 233'8'	·
8(c) (i)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 Mark: Correct answer.
	$x^2 = 4ay$	
	R	
	$P(2ap ap^2)$	
	S (0 a)	
1		ĺ
	$\longleftrightarrow x$	ļ
	Let R be the coordinates (x, y) . Use the midpoint formula.	
	$x = \frac{x_1 + x_2}{2} \qquad y = \frac{y_1 + y_2}{2}$	
	$2ap = \frac{0+x}{2} \qquad ap^2 = \frac{a+y}{2}$	
	$x = 4ap y = 2ap^2 - a$	

8(c)	Eliminate p to find the locus of R .	3 Marks: Correct
(ii)	$y = 2ap^2 - a$	answer. 2 Marks: Makes
	$=2a\times\left(\frac{x}{4a}\right)^2-a$	significant
	$=2a\times\left(\frac{1}{4a}\right)^{-a}$	progress.
	$=\frac{x^2}{9a}-a$	1 Mark:
	$=\frac{a}{8a}-a$	Eliminates p or finds the focal
	$\frac{x^2}{8a} = y + a$	length and
1	1 ***	vertex of the
	$x^2 = 8a(y+a)$	given parabola.
	Parabola with a focal length of $2a$, and vertex $(0,-a)$	
8(d)	$x^3 + x^2 + 2x$	2 Marks: Correct
	$x^{3} + x^{2} + 2x$ $x - 4) x^{4} - 3x^{3} - 2x^{2} - 5x$	answer.
ĺ	$\frac{x^4 - 4x^3}{1x^3 - 2x^2}$	1 Mark:
	1	Completes a
	$1x^3 - 4x^2$	division showing some
	$\frac{1x^3 - 4x^2}{2x^2 - 5x}$	understanding.
	$2x^2-8x$	
	${3x}$	
	$P(x) = (x-4)(x^3 + x^2 + 2x) + 3x$	
	$=x(x-4)(x^2+x+2)+3x$	
8(e)		2 Marks: Correct
(i)	$\sqrt{3}\sin 2\theta + \cos 2\theta$	answer.
	$A\sin 2\theta \cos \alpha + A\cos 2\theta \sin \alpha = A\sin(2\theta + \alpha)$	
1	Hence $A\cos\alpha = \sqrt{3}$ and $A\sin\alpha = 1$	
	Dividing these equations $\tan \alpha = \frac{1}{\sqrt{3}}$	1 Mark: Finds
	. 45	α or A. Alternatively shows some understanding of
	α = 30°	
	Squaring and adding the equations $A^2 = (\sqrt{3})^2 + 1^2$	
	A=2	the problem.
	$\sqrt{3}\sin 2\theta + \cos 2\theta = 2\sin(\theta + 30^\circ)$	
8(e) (ii)	Maximum value of the sine function is 1.	1 Mark: Correct answer.
	Maximum value of $2\sin(\theta + 30^{\circ})$ is 2.	
	Maximum value of $\sqrt{3} \sin 2\theta + \cos 2\theta$ is 2.	
	· · · · · · · · · · · · · · · · · · ·	