SI I	Α	CE	Exam	inat	ions
10777	, ,	~-	L/\ulli	HILLIA	

Student Name:	

2014
YEAR 11
YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- · Allow about 1 hour 45 minutes for this section

Preliminary Mathematics

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int_{-x}^{1} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_{x} x$, x > 0

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the value of $\frac{(2.34)^2 5.21}{\sqrt{19.75 + 7.08 \times 1.92}}$ correct to two significant figures?
 - (A) 0.04
 - (B) 0.05
 - (C) 0.045
 - (D) 0.046
- 2 What is the value of $\tan \theta$ given that $\cos \theta = -\frac{1}{2}$ for $180^{\circ} \le \theta \le 360^{\circ}$?
 - (A) $-\sqrt{3}$
 - (B) $-\frac{1}{\sqrt{3}}$
 - (C) $\frac{1}{\sqrt{3}}$
 - (D) $\sqrt{3}$
- 3 What is the solution to the inequality $|2x-3| \ge 5$?
 - (A) $x \ge 4$ or $x \le -1$
 - (B) $x \ge 4$ or $x \ge -1$
 - (C) $x \le 4$ or $x \le -1$
 - (D) $x \le 4$ or $x \ge -1$
- 4 Evaluate $\lim_{x\to 4} \frac{x^2-3x-4}{x-4}$.
 - (A) Undefined
 - (B) 0
 - (C) 1
 - (D) 5

5 The following triangle has sides 7 cm, 10 cm and 11 cm.

Angle A is the smallest angle. Which of the following expressions is correct for angle A?

- (A) $\cos A = \frac{7^2 + 11^2 10^2}{2 \times 7 \times 11}$
- (B) $\cos A = \frac{10^2 + 7^2 11^2}{2 \times 7 \times 10}$
- (C) $\cos A = \frac{10^2 + 11^2 7^2}{2 \times 10 \times 11}$
- (D) $\cos A = \frac{10^2 + 7^2 11^2}{2 \times 10 \times 11}$
- 6 What is $\frac{4\sqrt{3}}{\sqrt{3}-\sqrt{2}} + \frac{4\sqrt{3}}{\sqrt{3}+\sqrt{2}}$ expressed with a rational denominator?
 - (A) 24
 - (B) 48
 - (C) 72
 - (D) 144
- 7 Which of the following is the correct expression for differentiating $f(x) = x^2 2x$ from first principles?
 - (A) $f'(x) = \lim_{h \to 0} \frac{(x-h)^2 2(x-h) (x^2 2x)}{h}$
 - (B) $f'(x) = \lim_{h \to 0} \frac{(x-h)^2 2(x-h) (x^2 2x)}{h}$
 - (C) $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 2(x+h) + (x^2 2x)}{h}$
 - (D) $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 2(x+h) (x^2 2x)}{h}$

8 In the diagram below ABCD is parallelogram and BY = XD.

Which test proves $\triangle ABY \equiv \triangle XCD$?

(A) AAA

(B) AAS

(C) SAS

- (D) RHS
- 9 What is the equation of the line though the points (6,0) and (0,4)?
 - (A) 3x + 2y + 12 = 0
 - (B) 2x+3y+12=0
 - (C) 3x+2y-12=0
 - (D) 2x+3y-12=0
- 10 What is the domain and range of the function $y = \sqrt{4-x}$?
 - (A) $x \le 4$; $y \ge 0$
 - (B) $0 \le x \le 4$; $y \ge 0$
 - (C) $x \ge 0$; $y \ge 0$
 - (D) All real x, all real y.

Section II

60 marks

Attempt Questions 11' 14

Allow about 1 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Que	estion 11 (15 marks)	Marks
(a)	Solve.	•
	(i) $\frac{5y}{2} - \frac{2y}{3} = 3$	1
	(ii) $8(x+2)=14(9-x)$	1
(b)	Factorise completely:	
	(i) $a^2 - 4a + 4$	1
	(ii) $ab-2bc+5a-10c$	1
	•	
(c)	Simplify $\sqrt{32} - \sqrt{18} + \sqrt{2}$.	2

(d) Simplify
$$\frac{2^n \times 4^{n+1}}{8^n}$$
.

(e) The base length x, of a square pyramid of volume V and perpendicular

height h, is given by the formula $x = \sqrt{\frac{3V}{h}}$. Find the value of x, if V = 750and h = 6.95. Answer correct to 2 decimal places

2

- (f) Find the equation of the normal to the curve $f(x) = x^2 4x + 1$ at the point where x = 1.
- (g) PQRS is a parallelogram with SR produced to T. Given PS = 110 cm, RT = 40 cm and QV = 60 cm.

- (i) Show that ΔPQV is similar to ΔTRV .
- (ii) Find the length of PQ.
 - the length of PQ.

Question 12 (15 marks)

· Marks

- (a) If $f(x) = 3^x + 3^{-x}$
 - (i) Evaluate f(0) f(1) and f(-1).

2

- (ii) State the domain and range of f(x).
- Points A(10,9), B, C(-4,-1) and D(-2,3) form a trapezium. Lines AB and CD are parallel. Line BC is parallel to the x-axis.

(i)	Find the gradient of line AB?	1
(ii)	What is the equation of the line AB?	1
(iii)	Show that the coordinates of B are $(5,-1)$.	2
(iv)	Find the distance AD.	1
(v)	Find the equation of the circle centred A with radius AD .	1
(vi)	What are the coordinates of the midpoint of BD?	1

- (c) Molly is standing at the top of a vertical cliff. The cliff is 52 metres above sea level and she is 1.8 metres tall. Molly observes a ship out to sea with an angle of depression of 27°.
 - (i) Draw a neat sketch showing this information.

 (ii) How far is the ship from the base of the cliff?
 - •
- (d) Solve $4^x 5(2^x) + 4 = 0$

2

Question 13 (15 marks)

Marks

1

2

1

(a) Two ships leave port A at the same time. Ship X travels on a bearing of 070° and ship Y travels for 15.7 km on a bearing of 98° until the bearing of ship X from ship Y is 300°.

- (i) Show that $\angle ABC = 130^{\circ}$
- (ii) What is the bearing of port A from ship X? Answer the nearest degree
- (iii) How far has ship X travelled? Answer correct to one decimal place.
- (b) Find the value of k for which $x^2 (k-1)x k = 0$ has equal roots.
- (c) Differentiate with respect to x.

(i)
$$3x^4 + 7x^2 + 1$$

(ii)
$$\sqrt{x^2+3}$$

(iii) $\frac{x+1}{x+1}$

- (d) Make neat sketches of the following equations on separate sets of axes. Mark clearly the essential features of each graph.
 - (i) y = |x-2|

(ii) $y = 1 + x^2$

2

1

(iii) xy = -2

- (iv) $y = -3^x$
- (e) For the function f(x) = 4x 3, find:
 - (i) the value of f(3a-1).
 - (ii) the value of x at which f(x) = 0.

Question 14 (15 marks)

Marks

(a) Prove $\sin \theta \cos \theta \tan \theta = 1 - \cos^2 \theta$.

2

(b) In the diagram below, PQ is parallel to SR, PQ = QR, $\angle XRS = 60^{\circ}$ and lines PR and SQ are perpendicular.

(i) Find the size of $\angle RQS$. Give reasons.

2

i) Prove that $\triangle QRS$ is an isosceles triangle.

2

(c) The quadratic equation $x^2 - 3x + 7 = 0$ has roots α and β . Find the value of:

(i)
$$\alpha + \beta$$

1

(ii) $\alpha\beta$

(iii) $\alpha^2 + \beta^2$

1

(iv)
$$\frac{3}{\alpha} + \frac{3}{\beta}$$

1

(d)

(i) Show that $\angle RPS = x^*$

2

(ii) Show that $h^2 = ab$

4

iii) Hence find the area of $\triangle PQR$ in terms of a and b.

1

End of paper

ACE Examination 2014

Year 11 Mathematics Yearly Examination

Worked solutions and marking guidelines

Section I		
	Solution	Criteria
1	$\frac{(2.34)^2 - 5.21}{\sqrt{19.75 + 7.08 \times 1.92}} = 0.04599618658$ $\approx 0.046 \text{ (2 sign ficant figures)}$	1 Mark: D
2	$\cos \theta = -\frac{1}{2} \text{ or } \theta = 240^{\circ}$ $\tan 240^{\circ} = \sqrt{3}$	1 Mark: D
3	$ 2x-3 \ge 5$ $2x-3 \ge 5 \text{and} 2x-3 \le -5$ $2x \ge 8 2x \le -2$ $x \ge 4 x \le -1$	1 Mark: A
4	$\lim_{x \to 4} \frac{x^2 - 3x - 4}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x + 1)}{(x - 4)}$ $= \lim_{x \to 4} (x + 1) = 5$	1 Mark: D
5	Smallest angle is opposite the smallest side. $\cos A = \frac{10^2 + 11^2 - 7^2}{2 \times 10 \times 11}$	1 Mark: C
6	$\frac{4\sqrt{3}}{\sqrt{3} - \sqrt{2}} + \frac{4\sqrt{3}}{\sqrt{3} + \sqrt{2}} = \frac{4\sqrt{3}\left(\sqrt{3} + \sqrt{2}\right) + 4\sqrt{3}\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{3} + \sqrt{2}\right)}$ $= \frac{12 + 4\sqrt{6} + 12 - 4\sqrt{6}}{3 - 2} = 24$	1 Mark: A
7	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x+h)^2 - 2(x+h) - (x^2 - 2x)}{h}$	1 Mark: D
8	$AB = CD$ (opposite sides of a parallelogram are equal) $BY = XD$ (given data) $\angle ABY = \angle XDC$ (opposite angles of a parallelogram are equal) $\Delta ABY \equiv \Delta XCD$ (SAS)	1 Mark: C

	Gradient of line	
	$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{0 - 6} = -\frac{4}{6} = -\frac{2}{3}$	
	$x_2 - x_1 = 0 - 6 = 6 = 3$	
9	$y-y_1 = m(x-x_1)$ $y-0 = -\frac{2}{3}(x-6)$	1 Mark: D
:	3y = -2(x-6)	
1	2x+3y-12=0	
	$y = \sqrt{4-x}$	
	$y^2 = 4-x$	
	Top half of a parabola.	
10	Passes through (0,2) (4,0)	1 Mark; A
	Domain: $x \le 4$	
	Range: $y \ge 0$	x
Section	m	
11(a)		1 Markov Comment
(i)	$6 \times \left(\frac{5y}{2} - \frac{2y}{3}\right) = 3 \times 6$	1 Marks: Correct answer
	15y - 4y = 18	
	11y=18	
	$y = \frac{18}{11} = 1\frac{7}{11}$	
11(a)	8(x+2) = 14(9-x)	1 Marks: Correct
(ii)	8x+16=126-14x	answer
1	22x = 110	
	x = 5	
11(b) (i)	$a^2 - 4a + 4 = (a - 2)^2$	1 Marks: Correct answer
11(b)	ab-2bc+5a-10c = b(a-2c)+5(a-2c)	1 Marks: Correct
(ii)	=(a-2c)(b+5)	answer
11(c)	$\sqrt{32} - \sqrt{18} + \sqrt{2} = 4\sqrt{2} - 3\sqrt{2} + \sqrt{2}$	2 Marks: Correct
	= 2√2	answer.
		1 Mark: Shows some
	· ·	understanding.
11(d)	$2^{n} \times 4^{n+1}$ $2^{n} \times 2^{2n+2}$	1 Marks: Correct
	$\frac{2^n \times 4^{n+1}}{8^n} = \frac{2^n \times 2^{2n+2}}{2^{3n}} = 2^2 = 4$	answer

11()	1	
11(e)	$x = \sqrt{\frac{3V}{h}}$	2 Marks: Correct answer.
ļ	· ·	1 Mark:
	$=\sqrt{\frac{3\times750}{6.95}}$	Substitutes
	· -w -	values into the
1110	=17.99280432≈17.99	formula.
11(f)	$f(x) = x^2 - 4x + 1$	2 Marks: Correct answer.
	At $x=1$ $f(1)=1^2-4\times 1+1=-2$	
	$\int f'(x) = 2x - 4$	1 Mark: Finds
	At $x=1$ $f'(1)=2\times 1-4=-2$	the gradient of
	Normal is perpendicular to the gradient of the tangent	the tangent or shows some
	$m_1 m_2 = -1, m_1 \times -2 = -1, m_1 = \frac{1}{2}$	understanding.
	Equation of the normal at (1,-2)	
	$y - y_1 = m(x - x_1)$	
	$y-(-2)=\frac{1}{2}(x-1)$	
	2y+4=x-1	
	x-2y-5=0	
11(g)	In ΔPQV and ΔTRV	2 Marks: Correct
(i)	$\angle PVQ = \angle RVT$ (vertically opposite angles are equal)	answer.
	$\angle VPQ = \angle VTR$ (alternate angles are equal, parallel lines)	
	$\angle PQV = \angle TRV$ (alternate angles are equal, parallel lines)	1 Mark: Shows
	ΔPOV is similar to ΔTRV (equiangular)	some understanding
117.3		
11(g) (ii)	$\frac{PQ}{40} = \frac{60}{50}$ (corresponding sides in similar triangles)	2 Marks: Correct answer.
	I 17 11	1 Mark: Uses
	$PQ = \frac{60}{50} \times 40$	corresponding
] 30	sides in similar
	= 48 cm	triangles
12(a)	$f(0) = 3^{0} + 3^{0} = 2$	2 Marks: Correct
(i)	1	. answer
	$f(1) = 3^{-1} + 3^{1} = 3\frac{1}{3},$ $f(-1) = 3^{1} + 3^{-1} = 3\frac{1}{3}$	1 Marks: Finds
		one of the values
12(a)	Domain: $\{x: All \text{ real } x\}$	1 Marks: Correct
(ii)	Range: $\{y: y \ge 2\}$	answer
12(b)	Gradient of CD is equal to the gradient of AB (parallel)	1 Mark: Correct
(i)	•	answer.
	$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{31}{-24} = \frac{4}{2} = 2$	

12(b) (ii)	$y - y_1 = m(x - x_1)$	I Mark: Correct answer.
` ′	y-9=2(x-10)	distrer,
	y-9=2x-20	1
	2x - y - 11 = 0 (1)	
12(b) (iii)	The point B lies on the line $BC(y=-1)$	2 Marks: Correct
(111)	Substitute –1 for y into eqn (1)	answer.
	2x - (-1) - 11 = 0	1 Mark: Finds one of the
	2x = 10 or x = 5	coordinates.
	Coordinates of B are $(5,-1)$.	
12(b) (iv)	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	1 Mark; Correct
(10)	$=\sqrt{(102)^2+(9-3)^2}$	answer.
	$=\sqrt{180}=6\sqrt{5}$]
	Distance AD is $\sqrt{180}$ or $6\sqrt{5}$	
12(b)	Equation of a circle	1 Mark: Correct
(v)	$(x-h)^2 + (y-k)^2 = r^2$	answer
	$(x-10)^2 + (y-9)^2 = (\sqrt{180})^2 = 180$	
12(b)	Mid-point formula	1 Mark: Correct
(vi)	$x = \frac{x_1 + x_2}{2} = \frac{-2 + 5}{2} = \frac{3}{2}$ $y = \frac{y_1 + y_2}{2} = \frac{3 + -1}{2} = 1$	answer.
	Midpoint is $\left(\frac{3}{2},1\right)$	
12(c)	Molly 1.8 m 27°	1 Mark: Correct
(i)		answer.
	Cliff 52 m	
	~	
	Ship	
12(c)	Complement of 27° is 63°	2 Marks: Correct
(ii)	ton 62°	answer.
1	$\tan 63^\circ = \frac{x}{52 + 1.8}$	1 Mark: Uses
]	$x = 53.8 \tan 63^\circ$	appropriate trig
	=105.5884452≈106 m	14410,
	Ship is 106 metres from the base of the cliff.	

12(d)	$4^x - 5(2^x) + 4 = 0$	2 Marks: Correct
	Let $m=2^x$	answer.
	then $m^2 - 5m + 4 = 0$	1 Mark: Makes
	(m-4)(m-1)=0	some progress
	m=4 $m=1$	towards the solution.
	$2^{x} = 4 \qquad \qquad 2^{x} = 1$	
	x=2 $x=0$	1116
13(a) (i)	$\angle ABC + 110^\circ + 120^\circ = 360^\circ$ North	1 Marks: Correct
(1)	$\angle ABC = 130^{\circ}$ North 110° 120°	
	70° North	
	A 28° 60°	
	15.7 C	
13(a)		1 Marks: Correct
(ii)	Bearing = 120° + 130°	answer
	= 250° The bearing of B from A is 250°	
13(a)	To find the distance AB we require $\angle BCA$	2 Marks: Correct
(iii)	$\angle BCA + 28^{\circ} + 130^{\circ} = 180^{\circ}$	answer.
	$\angle BCA = 22^{\circ}$	
		I Mark: Uses sine rule with at
	$\frac{AB}{\sin 22^\circ} = \frac{15.7}{\sin 130^\circ}$	least 2 correct
	$AB = \frac{15.7\sin 22^\circ}{\sin 130^\circ}$	values.
	= 7.67752259≈ 7.7 km	
13(b)	Ship X has travelled 7.7 km	2 Marks: Correct
12(0)	Equal roots $\Delta = 0$ $\Delta = b^2 - 4ac$	answer.
	-	1 Mark:
	$= \left(-(k-1)\right)^2 - 4 \times 1 \times (-k)$	Recognises $\Delta = 0$ and
	$=k^2-2k+1+4k$	substitutes at
	$=k^2+2k+1$	least one correct
	$=(k+1)^2$	value.
	Therefore $k = -1$	

13(c) (i)	$\frac{d}{dx}(3x^4 + 7x^2 + 1) = 12x^3 + 14x$	1 Marks: Correct answer
13(c) (ii)	$\frac{d}{dx}\sqrt{x^2+3} = \frac{d}{dx}(x^2+3)^{\frac{1}{2}} = \frac{1}{2}(x^2+3)^{\frac{1}{2}} \times 2x = \frac{x}{\sqrt{x^2+3}}$	1 Marks: Correct answer
13(c) (iii)	$\frac{d}{dx} \left(\frac{x+1}{x-1} \right) = \frac{(x-1) \times 1 - (x+1) \times 1}{(x-1)^2}$	1 Marks: Correct answer
	$=\frac{-2}{(x-1)^2}$	
13(d) (i)	y 4 3	1 Marks: Correct answer
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10(1)	-1	1)(1)
13(d) (ii)	8 7 7 6 6 5 5 4 4 4 3 3 2 2 3 3 x	1 Marks: Correct answer
13(d) (iii)	y 14 3 2 1 1 2 4 3 3 4 4 4	1 Marks; Correct answer

13(d) (iv)	3 -2 1 1 -2 2 3 4 -3 -2 -3 -4	1 Marks; Correct answer
13(e) (i)	$f(x) = 4x - 3$ $f(3a-1) = 4 \times (3a-1) - 3$ $= 12a - 4 - 2$ $= 12a - 6$	1 Marks: Correct answer
13(e) (ii)	$f(x) = 4x - 3$ $0 = 4x - 3$ $4x = 3$ $x = \frac{3}{4}$	1 Marks: Correct answer
14(a)	LHS = $\sin \theta \cos \theta \tan \theta$ = $\sin \theta \cos \theta \times \frac{\sin \theta}{\cos \theta}$ = $\sin^2 \theta$ = $1 - \cos^2 \theta$ = RHS	2 Marks: Correct answer. 1 Mark: Uses a relevant trig identity.
!4(b) (i)	$\angle QPX = \angle XRS = 60^\circ$ (alternate angles are equal, PQ / SR) $\triangle PQR$ is an isosceles triangle (two equal sides, $PQ = QR$) $\angle QPX = \angle QRX = 60^\circ$ (base angles are equal, isosceles triangle) $\angle RXQ + \angle PXQ = 180^\circ$ (adjacent angles on a straight line) $\angle RXQ + 90^\circ = 180^\circ$ $\angle RXQ = 90^\circ$ In $\triangle QXR$ $\angle RQX + \angle RXQ + \angle QRX = 180^\circ$ (Angle sum of a triangle is 180°) $\angle RQX + 90^\circ + 60^\circ = 180^\circ$ $\angle RQX = 30^\circ$ or $\angle RQS = 30^\circ$	2 Marks: Correct answer. 1 Mark: Finds ∠RQS without appropriate reasons. Alternatively makes significant towards the solution.

		· · · · · · · · · · · · · · · · · · ·
!4(b) (ii)	In $\triangle QRS$ $\angle QSR + \angle QRS + \angle RQS = 180^{\circ}$ (Angle sum of a triangle is 180°)	2 Marks; Correct answer. 1 Mark: Shows
	$\angle QSR + (60^{\circ} + 60^{\circ}) + 30^{\circ} = 180^{\circ}$	some
	$\angle QSR = 30^{\circ}$	understanding of
	$\therefore \angle RQS = \angle QSR = 30^{\circ}$	the problem.
	ΔQRS is an isosceles triangle (two base angles are equal).	
!4(c) (i)	$\alpha + \beta = -\frac{b}{a} = -\frac{-3}{1} = 3$	1 Marks; Correct answer
!4(c) (ii)	$\alpha\beta = \frac{c}{a} = \frac{7}{1} = 7$	1 Marks: Correct answer
!4(c) (iii)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= (3)^{2} - 2 \times 7 = -5$	1 Marks: Correct answer
!4(c) (iv)	$\frac{3}{\alpha} + \frac{3}{\beta} = \frac{3\beta + 3\alpha}{\alpha\beta} = \frac{3(\alpha + \beta)}{\alpha\beta} = \frac{3 \times 3}{7} = \frac{6}{7}$	1 Marks: Correct answer
14(d)	In APQR	2 Marks: Correct
(i)	$\angle PQR + \angle RPQ + \angle PRQ = 180^{\circ}$ (Angle sum of triangle is 180°)	answer.
	$x+90^{\circ}+\angle PRO=180^{\circ}$	136.5.365
	$\angle PRO = 90^{\circ} - x$	1 Mark: Makes some progress
	In APSR	towards the
	$\angle RPS + \angle PSR + \angle PRS = 180^{\circ}$ (Angle sum of triangle is 180°)	solution.
	$\angle RPS + 90^{\circ} + (90^{\circ} - x^{\circ}) = 180^{\circ}$	
	$RPS = x^{\circ}$	
14(d)	T. A DOD 4	2 Marks: Correc
(ii)	In $\triangle PSR \tan x^{\circ} = \frac{a}{h}$	answer.
	In $\triangle PSQ$ $\tan x^2 = \frac{h}{b}$	1 Mark: Finds
	Hence $\frac{a}{h} = \frac{h}{b}$ (both $\tan x^{\circ}$)	equation.
i	$h^2 = ab$	
14(d)	$h^2 = ab$	1 Marks: Correc
(iii)	$h = \sqrt{ab}$	answer
:	$A = \frac{1}{2}bh$	
	$= \frac{1}{2} \times (a+b) \times \sqrt{ab} = \frac{(a+b)\sqrt{ab}}{2}$	