Student name/number:	

Advanced

Mathematical

Publications

2001
PRELIMINARY FINAL EXAMINATION

(Place your crest here)

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- All necessary working should be shown in every question

Total marks (84)

- Attempt Questions 1 7
- All questions are of equal value

Ques	tion 1 (12 marks)	Start a NEW page	Marks
(a)	Factorise fully $32y^2 - 2$.		1
(b)	Simplify $\sqrt{32} + \sqrt{50} - \sqrt{8}$		2
(c)	Express 0.18 as a simple fraction.		2
(d)	Solve $\frac{8-x}{4} < 5$		2
(e)	Solve $2 + 5x + x^2 = 0$ expressing the ro	ots in surd form	2
(f)	Rationalise $\frac{3}{3+\sqrt{2}}$		1
(g)	Calculate correct to 3 significant figure	es the value of	2
	$4\pi \sqrt{\frac{m}{g}}$ if $m = 15.2$ and $g = 9.8$		

Question 2 (12 marks)

Start a NEW page

Marks

(a) A function y = f(x) is given by the rule

$$f(x) = \begin{cases} x^2 & \text{if } -1 \le x < 1 \\ 2 - x & \text{if } 1 \le x \le 3 \\ -1 & \text{if } 3 \le x \le 5 \end{cases}$$

(i) Graph the function.

2

(ii) From the graph or otherwise, find the range and domain of the function

2

(iii) Find the value of $f\left(\frac{1}{2}\right) + f(4)$

1

(b) Find the largest possible domain for the function

1

$$y = \sqrt{2x - 3}$$

(c) Find the exact value of $\sin 45^{\circ} \cdot \cos 30^{\circ}$

1

(d) If $\sec \theta = 2$ and $0^{\circ} \le \theta \le 360^{\circ}$,

2

Find the value(s) of θ .

(e)

Prove the identity
$$\frac{\left(\cos\theta + \sin\theta\right)^2}{\sin\theta\cos\theta} = 2 + \csc\theta\sec\theta$$

Question 3 (12 marks)

Start a NEW page

Marks

The points P(-1, 0), Q(2, -1) and R(1, 6) are shown on the diagram below

Copy this diagram

(a) Show that the gradient of PR is 3

1

(b) Show that the length of PR is $2\sqrt{10}$ units.

1

(c) Show that the equation of PQ is x - 3y - 1 = 0.

2

(d) Point M is the midpoint of PR. Show that the coordinates of M are (0, 3). Mark point M on your diagram.

1

1

(e) Show that PR and PQ are perpendicular

(f) Find the area of $\triangle PMQ$

2

- (g) On your diagram draw the line I which passes through M and is perpendicular to PR. Label the intersection between I and RQ the point N. Find the equation of the line I.
- (h) What type of quadrilateral is *PMNQ*. Give reasons.

Ques	tion 4 (12 marks) S	tart a NEW page	Marks
(a)	If $f(x) = 5x^2 - 2x + 2$ and $g(x) = 3x + 2$ then for what values of x is $f(x) = g(x)$?		2
(b)	Find the equation of the tangent to the cur	eve $y = \sqrt{x+1}$ at the point (3,2).	3
(c)) Differentiate the following		4
	(i) $y = (x^3 + 5)^4$		
	(ii) $y = \frac{x+1}{x-2}$		
(d)	Find the values of c for which the function	n	3
$y = x^2 - 5x + c$ is positive definite.			

Question 5 (12 marks)

Start a NEW page

Marks

(a) Using the diagram below:

Given that AE || BC, and DC || AB

(i) Prove $\triangle ABE \parallel \triangle CDB$

3

(ii) Hence, calculate the length of ED.

2

(b) Find the gradient of the normal to the curve $y = \frac{1}{x^2}$ at the point where x = 2.

2

(c) AOB is the diameter of the given circle, centre O.

- (i) If BC = BD, prove that $\triangle COB = \triangle ODB$.
- (ii) Hence prove AC = AD.

Question 6 (12 marks)

Start a NEW page

Marks

(a) Ramish and Tran have their kites tangled at point *P* in a kite flying exhibition. Point *P* is 60 metres from Ramish at *R* and 50 metres from Tran at *T*. Ramish and Tran are 100 metres apart.

(i) Show that the angle (to the nearest degree) between the two tangled kites is 131°.

3

(ii) Find the height h (to the nearest metre).

3

(b) (i) Shade the region bounded by the inequations

3

$$y \ge 0$$
, $x + y < 1$, $y < 4x + 6$

neatly on the same number plane.

(ii) Find the area of the shaded region in part (i).

1

(c) Find the values of p and q if $3x^2 - 12x + 7 \equiv 3(x+p)^2 + q$

Ques	tion 7 (12 marks)	Start a NEW page	Marks
(a)	Solve $x^2 - 2x \le 8$		2
(b)	Solve the equation $4^x - 2^x - 56 = 0$		3
(c)	For what values of k does the quadrat have real roots?	ic equation $(k+2)x^2 - 2kx + 1 = 0$	3
(d)	Given the parabola $x^2 - 6x + 3y + 6 = 6$ (i) coordinates of the vertex (ii) focal length (iii) equation of the directrix	O find the	4

End of examination

Question 1 (12 Marks)

(a)
$$2(16y^2-1)$$

= $2(4y+1)(4y-1)$

(b)
$$4\sqrt{2} + 5\sqrt{2} - 2\sqrt{2} \checkmark$$

= $7\sqrt{2} \checkmark$

(c) Let
$$x = 0.1888...$$
 (1) $10x = 1.888...$ (2)

(2) - (1)
$$90x = 17$$
 ✓
∴ $x = \frac{17}{90}$ ✓

(d)
$$\frac{8-x}{4} < 5$$

$$\therefore 8-x < 20 \checkmark$$

$$\therefore -x < 12$$

$$\therefore x > -12 \checkmark$$

(e)
$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times 2}}{2 \times 1} \checkmark$$
$$x = \frac{-5 \pm \sqrt{17}}{2} \checkmark$$

(f)
$$\frac{3}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}$$
$$= \frac{9-3\sqrt{2}}{5} \checkmark$$

(g)
$$4 \times \pi \sqrt{\frac{15.2}{9.8}}$$

= 15.65015417 \checkmark
= 15.7 (to 3 s.f.) \checkmark

Question 2 (12 Marks)

(ii)
$$D: -1 \le x \le 5$$

 $R: -1 \le y \le 1$

(iii)
$$f\left(\frac{1}{2}\right) + f\left(4\right) = \left(\frac{1}{2}\right)^2 - 1$$

= $-\frac{3}{4}$

(b)
$$2x-3 \ge 0$$

 $x \ge \frac{3}{2}$

(c)
$$\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2\sqrt{2}}$$
 or $\frac{\sqrt{6}}{4}$

(d)
$$\cos \theta = \frac{1}{2}$$

$$\therefore \theta = 60^{\circ}, 300^{\circ} \checkmark \checkmark$$

(e) L.H.S.
$$= \frac{\cos^{2}\theta + \sin^{2}\theta + 2\cos\theta\sin\theta}{\sin\theta\cos\theta}$$

$$= \frac{1 + 2\sin\theta\cos\theta}{\sin\theta\cos\theta} \left\{ \because \cos^{2}\theta + \sin^{2}\theta = 1 \right\} \checkmark$$

$$= \frac{1}{\sin\theta\cos\theta} + \frac{2\sin\theta\cos\theta}{\sin\theta\cos\theta} \checkmark$$

$$(\because \csc\theta = \frac{1}{\sin\theta}; \sec\theta = \frac{1}{\cos\theta}) \checkmark$$

$$= \csc\theta\sec\theta + 2 = \text{R.H.S.}$$

Question 3 (12 Marks)

(a)
$$P(-1, 0)$$
 and $R(1, 6)$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$
 $m = \frac{6 - 0}{1 + 1}$
 $m = 3$

(b)
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$PR = \sqrt{(1+1)^2 + (6-0)^2}$$

$$PR = \sqrt{40}$$

$$PR = 2\sqrt{10}$$

(c)
$$P(-1, 0), Q(2, -1)$$

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{y - 0}{x + 1} = \frac{-1 - 0}{2 + 1} \checkmark$$

$$3y = -x - 1$$

$$x + 3y + 1 = 0 \checkmark$$

(d)
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$M = \left(\frac{-1 + 1}{2}, \frac{0 + 6}{2}\right)$$
$$M = (0, 3) \checkmark$$

(e) PQ;
$$x + 3y + 1 = 0$$
.
 $m = -\frac{a}{b}$ $\therefore m_{pq} = -\frac{1}{3}$
but $m_{pr} = 3$
 $\therefore m_{pq} \times m_{pr} = -1$
hence PR and PQ are perpendicular.

(f)
$$PQ = \sqrt{(2+1)^2 + (-1-0)^2}$$

$$PQ = \sqrt{10}$$

$$PM = \frac{1}{2} \times 2\sqrt{10} = \sqrt{10}$$

$$Area \triangle PMQ = \frac{1}{2} \times \sqrt{10} \times \sqrt{10}$$

$$= 5 \text{ units}^2 \checkmark$$

$$m_{pq} = m_{mn} = -\frac{1}{3}$$
 \checkmark
equation of the line l
 $y - y_l = m(x - x_l)$
 $y - 3 = -\frac{1}{3}(x - 0)$
 $3y - 9 = -x$
 $\therefore x + 3y - 9 = 0$ \checkmark

(h) PMNQ is a trapezium \checkmark proof; $\angle MPQ = 90^{\circ}$ (PR and PQ are perpendicular, proven above in (e)) $\angle PMN = 90^{\circ}$ (MN constructed perpendicular to PR) $\therefore MN$ is parallel to PQ (co-interior angles are supplementary) $\therefore PMNQ$ is a trapezium as it has one pair of opposite sides parallel \checkmark

Question 4 (12 Marks)

(a)
$$5x^2 - 2x + 2 = 3x + 2$$

 $5x^2 - 5x = 0$ \checkmark
 $5x(x-1) = 0$
 $x = 0 \text{ or } x = 1$ \checkmark

(b)
$$\frac{dy}{dx} = \frac{1}{2}(x+1)^{-\frac{1}{2}} \checkmark$$

at (3,2) $\frac{dy}{dx} = \frac{1}{2}(3+1)^{-\frac{1}{2}} = \frac{1}{4} \checkmark$

equation of tangent

$$y-2 = \frac{1}{4}(x-3)$$

$$4y-8 = x-3$$

$$x-4y+5 = 0 \checkmark$$

(c) (i)
$$\frac{dy}{dx} = 4(x^3 + 5)^3 \times 3x^2 \checkmark$$

= $12x^2(x^3 + 5) \checkmark$

(ii)
$$\frac{dy}{dx} = \frac{(x-2) \cdot 1 - (x+1) \cdot 1}{(x-2)^2} \checkmark$$
$$= \frac{x-2-x-1}{(x-2)^2}$$
$$= \frac{-3}{(x-2)^2} \checkmark$$

(d) For positive definite $\Delta < 0$ and a > 0.

$$a = 1 > 0 \checkmark$$

$$\therefore \Delta = b^2 - 4ac$$

$$= 25 - 4 \times 1 \times c \checkmark$$

$$\therefore 25 - 4c < 0$$

$$\therefore c > 6\frac{1}{4} \text{ or } \frac{25}{4} \checkmark$$

Question 5 (12 Marks)

(a) (i) In ΔABE and ΔBCD

∠AEB = ∠DBC (alternate ∠s, AE || BC)

∠CDB = ∠ABE (alternate ∠s, CD || AB) ✓

∠EAB = ∠DCB (Angle sum of Δ) ✓

∴ΔABE ||| ΔCDB (equiangular) ✓

(ii)
$$\frac{x+48}{48} = \frac{64}{16} = 4$$
 \checkmark $x+48=192$ $x=144$ \checkmark

(b)
$$\frac{dy}{dx} = \frac{-2}{x^3}$$
when $x = 2$,
$$\frac{dy}{dx} = -\frac{2}{8} = -\frac{1}{4} \checkmark$$

∴ gradient of the normal is 4 ✓

(c) (i) In ΔCOB, ΔDOB

BC=BD (given)

OD=OC (radii) ✓

OB is common

∴ ΔCOB ≡ ΔODB (S.S.S test) ✓

$$\therefore$$
 AC=AD (corresp. sides in congruent Δ s) \checkmark

Question 6 (12 Marks)

(a) (i) Using Cosine rule in ΔPTR

100² = 50² + 60² - 2×50×60×cos ∠P ✓
∴ cos ∠P =
$$\frac{2500 + 3600 - 10000}{6000}$$
 ✓
= -0.65
∴ ∠P = cos⁻¹ (-0.65) ≈ 131° as required. ✓

(ii) In $\triangle PTR$, using the sine rule $\sin AT = \sin AP$

$$\frac{\sin \angle T}{60} = \frac{\sin \angle P}{100} \checkmark$$
$$\sin \angle T = \frac{60 \times \sin \angle P}{100}$$

$$\therefore \angle P = 27^{\circ}8' \checkmark$$

In $\triangle PST$, using sine ratio

$$\sin 27^{\circ}8' = \frac{h}{50}$$

$$\therefore h = 50 \sin 27^{0}8'$$
= 23 m (to the nearest metre).

(b) (i) y (-1,2) -2/-1 1 x

(ii)
$$A = \frac{1}{2}bh$$

= $\frac{1}{2} \times \frac{5}{2} \times 2$
= $2\frac{1}{2}$ sq. units \checkmark

(c) L.H.S. =
$$3(x^2 - 4x + 4) + 17 - 12$$

= $3(x-2)^2 + 5$
= $3(x+p)^2 + q$

$$\therefore p = -2, q = 5 \checkmark$$

Question 7 (12 Marks)

(a)
$$x^2 - 2x \le 8$$

 $x^2 - 2x - 8 \le 0$
 $(x - 4)(x + 2) \le 0 \checkmark$
 $\therefore -2 \le x \le 4 \checkmark$

(b)
$$4^{x} - 2^{x} - 56 = 0$$

 $2^{2x} - 2^{x} - 56 = 0$
let $m = 2^{x}$
 $\therefore m^{2} - m - 56 = 0$
 $(m + 7)(m - 8) = 0$ \checkmark
 $\therefore m = -7 \text{ or } m = 8 \text{ but } m = 2^{x}$
 $\therefore 2^{x} = -7 \text{ or } 2^{x} = 8$ \checkmark
No Soln $x = 3$
 \therefore solution is $x = 3$

(c)
$$b^2 - 4ac \ge 0$$

 $(2k)^2 - 4(k+2) \cdot 1 \ge 0 \checkmark$
 $4k^2 - 4k + 8 \ge 0$
 $k^2 - k + 2 \ge 0 \checkmark$
 $(k+1)(k-2) \ge 0$
 $k \le -1 \text{ or } k \ge 2 \checkmark$

(d) (i)
$$x^2 - 6x + 3y + 6 = 0$$

 $x^2 - 6x + 9 + 3y + 6 = 9$
 $x^2 - 6x + 9 = -3y + 3$
 $(x - 3)^2 = -3(y - 1)$ \checkmark
 \therefore vertex is $(3, 1)$

(ii) focal length
$$4a = 3$$

 $a = \frac{3}{4}$

(iii) directrix y = p + a (concave down, vertex (p, q)) $y = 1\frac{3}{4}$

End of examination