Student name/number:	

Advanced

Mathematical

Publications

2001
TRIAL HIGHER SCHOOL CERTIFICATE
EXAMINATION

(Place your crest here)

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 12
- All necessary working should be shown in every question

Total marks (120)

- Attempt Questions 1 10
- All questions are of equal value

Please note that this is a Trial paper only and cannot in any way guarantee the format or the content of the Higher School Certificate Examination.

Question 1(12 marks)

Start a NEW page.

Marks

(a) Express $\frac{1}{3+2\sqrt{5}}$ in the form of $a+h\sqrt{5}$

2

- where a and b are rational numbers.
- (b) In the diagram PQ is parallel to RS. Find the value of θ , giving reasons.

2

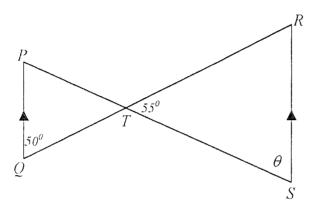


Figure not to scale

(c) Solve the quadratic equation $5x^2 = 3x + 2$

2

(d) The Goods and Services Tax has increased the quotes of tradespeople by 10%. If the quote for a job is \$8 250, how much of this amount is tax?

2

(e) Factorise fully $3m^3 - 24$

2

(f) Solve $\frac{2t}{t+5} = \frac{3}{8}$.

2

Que	estion 2(12 i	marks) Start a NEW page.	Marks
(a)		asketballer, has a probability of 0 9 of scoring a two pointer robability of Kaz, from two shots	2
	(i)	scoring only once	
	(ii)	missing both times	
(b)	Differentia	te with respect to x	
	(i)	$(4-3x)^8$	2
	(ii)	$3x\sin 4x$	2
	(iii)	$\frac{\log_e 3x}{x}$	2
(c)	Find the gr	radient of the tangent to the curve $y = \sqrt{x}$ at the point where $x = 25$.	2
(d)	-	has equation $y = x^2 - 8x + 10$. Foordinates of the vertex and the focal length	2

Que	stion	3 (12 marks) Start a NEW page.	Marks
(a)	(i)	Draw a neat sketch of the line $3x + 2y - 9 = 0$ showing the main features	2
	(ii)	Find the equation of the normal to the line $3x + 2y - 9 = 0$ passing through the point $(1,3)$.	2
	(iii)	Find where the normal cuts the x-axis and draw a neat sketch of the line on the same number plane as part (i).	2
	(iv)	Find the area of the triangle enclosed by the two lines and the x-axis.	2
(b)		the point of intersection of the lines $y - y = 12$ and $3x + y = 13$.	2
(c)	Find	the perpendicular distance from the point (2,4) to the line $3x-4y=1$.	2

Que	stion	4 (12 marks) Start a NEW page.	Marks
(a)		arc 9 cm long subtends an angle of 120" at the centre of the circle the radius of the circle correct to 1 decimal place.	2
(b)	In a prod ratio	geometric series, the product of the first and second terms is 32 and the uct of the third and fourth terms is 2. Find the first term, a and the common a , r .	3
(c)	Con	sider the curve $y = x^3 + 6x^2$.	5
	(i)	Find the coordinates of the stationary points and determine their nature	
	(ii)	Find the coordinates of the point of inflexion.	
	(iii)	Sketch the graph for the domain $-6 \le x \le 2$, clearly showing the main features.	
(d)		α and β be the roots of the equation $2x^2 - 4x + 6 = 0$ the value of $(\alpha^2 + 1)(\beta^2 + 1)$	2

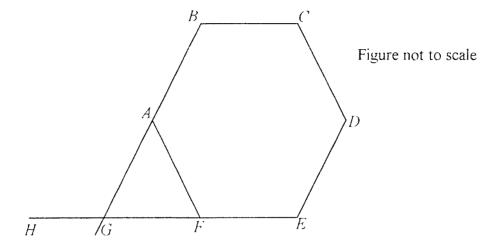
Question 5 (12 marks)

Start a NEW page.

Marks

5

(a)



In the figure ABCDEF is a regular hexagon with BA and EF produced to meet at G. The point H lies on EFG produced.

- (i) Copy the diagram onto your writing booklet and find the size of $\angle BAF$.
- (ii) Find the size of $\angle AGH$ giving reasons
- (b) During a game of golf, Karrie hit the ball from the tee, T, 7° off line (as shown in the figure below) It travelled 213 metres to land at R which was 136 metres from the hole, H.

Find the distance from T to H to the nearest metre

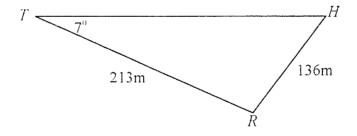


Figure not to scale

(c) Find the values of x which satisfy the inequality 7-4x < 13.

2

5

Question 6 (12 marks)

Start a NEW page.

Marks

(a) A particle is projected vertically upwards from a point 30 metres above the ground. The path of the particle is given by

5

$$h = 6\left(5 + 9t - 3t^2\right)$$

where h is the height in metres above the ground at time t seconds after projection. Find

- (i) the time taken to reach the greatest height
- (ii) the greatest height reached
- (iii) the magnitude and direction of the velocity after $2\frac{1}{2}$ seconds.
- (iv) the magnitude and direction of the acceleration.
- (b) Solve the equation

3

$$x^6 = 2(5x^3 - 8).$$

(c) Consider the function given by $y = 2 + \cos^2 x$

4

(i) Copy and complete the following table onto your writing booklet. (Note that x is in radians)

х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
У	3				:

(ii) Apply Simpson's rule with five function values to find an approximation to

$$\int_0^{\pi} 2 + \cos^2 x \, dx$$

Que	stion 7	(12 marks)	Start a NEW page.	Marks
(a)	(i)	$If f(x) = 5 + 4\cos(x)$	s3x, find $f'(x)$	1
	(ii)	Hence show that	$\int_{3}^{\alpha} \frac{-12\sin 3x}{5 + 4\cos 3x} dx = 2.197$	3
		correct to 3 deci	mal places.	
(b)	The r Then	affle has three priz a second ticket is	mbered 1 to 200 inclusive are sold in a raffle. es. One ticket is drawn for the first prize and discarded drawn for the second prize. This is discarded and then drawn. What is the probability that	
	(i)	all three prizes a	re won by tickets numbered 1 to 50 inclusive.	2
	(ii)	at least one ticke	et numbered 1 to 50 inclusive wins a prize	2
(c)	Evalı	ıate		
	(i)	$\int_{0}^{1} 2e^{4x} dx$		2
	(ii)	$\int_0^{\frac{\pi}{2}} 2\sec^2 \frac{1}{2}\theta \ d\theta$		2

Question 8 (12 marks)

Start a NEW page.

Marks

(a) Find the centre and radius of the circle with equation

4

$$x^2 + y^2 - 6x + 4y + 4 = 0$$

(b) Find the points of intersection between the curves $y = x^2 + 1$ and $y = 2 + x - x^2$ Calculate the area between the two curves.

5

(c) The present temperature of a star is $8500^{\circ}C$ and it is losing heat continuously in a way that in t million years, its temperature $T^{\circ}C$ may be calculated from the equation

3

$$T = T_0 e^{-0.06t}$$

- (i) Find the temperature of the star in 4 million years (to the nearest degree).
- (ii) After how many years from now will the temperature of the star be halved.

Question 9 (12 marks)

Start a NEW page.

Marks

- (a) The seventh term in an arithmetic sequence is 14 and the thirteenth term is 32
- 6
- (i) Find the value of the common difference and the value of the first term.
- (ii) Find the sum of the first 70 terms

(b)

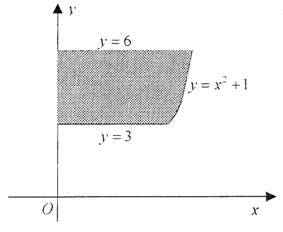


Figure not to scale

The shaded region in the diagram above is bounded by the curve $y = x^2 + 1$, the y-axis, and the lines y = 3 and y = 6.

3

Calculate the volume of the solid of revolution formed when this region is rotated about the y-axis.

3

(c) \$15 000 is placed in a bank account and earns 7% p.a. interest compounded every six months. How much money to the nearest dollar is in the account at the end of 5 years, after the final interest has been paid.

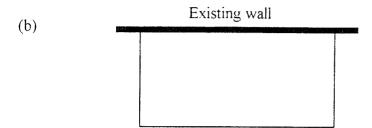
Question 10 (12 marks)

Start a NEW page.

Marks

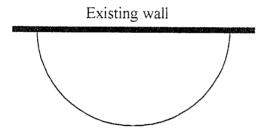
6

(a) Given that $\sum_{n=1}^{r} \alpha r^n = \frac{\alpha}{1-r}$, find the value of r such that the ratio of the second term to the limiting sum is 2.9.



200 metres of fencing is to be used with an existing wall to make a rectangular enclosure.

(i) Find the area of the largest possible rectangle.



- (ii) Find the area enclosed had the fencing been made into a semi-circle with the existing wall.
- (c) Solve $3\log_4 2 = \log_4 2x \log_4 5$.

2

End of examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n-1}, \quad n \neq 1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Question 1 (12 Marks)

(a)
$$\frac{1}{\left(3+2\sqrt{5}\right)} \times \frac{\left(3-2\sqrt{5}\right)}{\left(3-2\sqrt{5}\right)}$$
$$= \frac{3-2\sqrt{5}}{-11} \checkmark$$
$$= -\frac{3}{11} + \frac{2\sqrt{5}}{11} \checkmark$$

- (b) $\angle TRS = 50^{\circ}$ (Alternate angles PQ||RS) \checkmark $\theta = 75^{\circ}$ (Angle sum of \triangle) \checkmark
- (c) $5x^2 3x 2 = 0$ (5x + 2)(x - 1) = 0 \checkmark $x = -\frac{2}{5}$ or 1. \checkmark
- (d) 110% is \$8250 1% is \$75 ✓ Tax 10% is \$750. ✓
- (e) $3(m^3-2^3) \checkmark$ = $3(m-2)(m^2+2m+4) \checkmark$
- (f) 16t = 3t + 15 $13t = 15 \checkmark$ $t = \frac{15}{13} = 1\frac{2}{13} \checkmark$

Question 2 (12 Marks)

(a) (i)
$$P(BB \text{ or } BB) = 0.9 \times 0.1 + 0.1 \times 0.9$$

= 0.18 \checkmark

(ii)
$$P(\tilde{B}\tilde{B}) = 0.1 \times 0.1 = 0.01 \checkmark$$

(b) (i)
$$8(4-3x)^7(-3)$$
 \checkmark
= $-24(4-3x)^7$ \checkmark

(ii)
$$3x \cos 4x \times 4 + \sin 4x \times 3$$

= $12x \cos 4x + 3\sin 4x$

(iii)
$$\frac{x \cdot \frac{1}{3x} \cdot 3 - \ln 3x \cdot 1}{x^2} \checkmark$$
$$= \frac{1 - \ln 3x}{x^2} \checkmark$$

(c)
$$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \checkmark$$

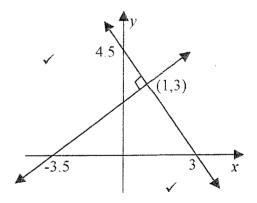
At $x = 25$, $m = \frac{1}{10} \checkmark$

(d)
$$y-10 = x^2 - 8x$$

 $y-10+16 = x^2 - 8x + 16$
 $y+6 = (x-4)^2 \checkmark$
Vertex is $(4,-6)$
Focal length is $\frac{1}{4} \checkmark$

Question 3 (12 Marks)

(a) (i)



(ii) Gradient of line is
$$-\frac{3}{2}$$
.

Gradient of normal is $\frac{2}{3}$. \checkmark

Equation of the normal is

 $y-3=\frac{2}{3}(x-1)$
 $\therefore 2x-3y+7=0$. \checkmark

- (iii) Normal cuts x-axis at $-3\frac{1}{2}$ Refer to diagram.
- (iv) $A = \frac{1}{2}bh = \frac{1}{2} \times \frac{15}{2} \times 3 \checkmark$ = $11\frac{1}{4}$ sq. units \checkmark
- (b) 2x y = 12 3x + y = 13 $\therefore x = 5, y = -2. \checkmark$

Point of intersection is (5,-2).

(c) Perpendicular distance is

$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

$$= \left| \frac{6 - 16 - 1}{\sqrt{9 + 16}} \right| \checkmark$$

$$= \frac{11}{5} = 2\frac{1}{5} \checkmark$$

Question 4 (12 Marks)

- (a) $l = r\theta \Rightarrow 9 = r \cdot \frac{2\pi}{3} \checkmark$ $\therefore r = 4.3 \text{ cm (to 1 d.p.)} \checkmark$

(c)
$$y = x^3 + 6x^2$$
$$\frac{dy}{dx} = 3x^2 + 12x$$

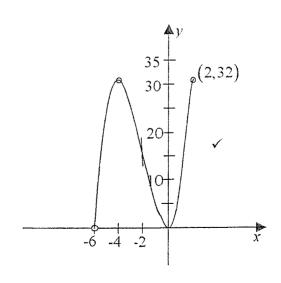
(i) Stationary points occur when y' = 0 3x(x+4) = 0 x = 0 or -4y = 0 or 32

$$\frac{d^2y}{dx^2} = 6x + 12$$
At $x = 0$, $\frac{d^2y}{dx^2} > 0$, \therefore Min at $(0,0)$. \checkmark
At
$$x = -4$$
, $\frac{d^2y}{dx^2} < 0$; \therefore Max at $(-4,32)$.

(ii) Point of inflexion when $\frac{d^2y}{dx^2} = 0$ 6x + 12 = 0x = -2, $y = 16 \checkmark$

> Test for concavity. f''(-1) > 0 and f''(-3) < 0 \checkmark \therefore point of inflexion at (-2,16)

(iii)



(d)
$$(\alpha^2 + 1)(\beta^2 + 1)$$

$$= (\alpha\beta)^2 + (\alpha + \beta)^2 - 2\alpha\beta + 1 \quad \checkmark$$

$$= \left(\frac{6}{2}\right)^2 + \left(\frac{4}{2}\right)^2 - 2 \times \frac{6}{2} + 1 = 8 \quad \checkmark$$

Question 5 (12 Marks)

(a) (i) Diagram
$$\checkmark$$

$$\angle BAF = \frac{4 \times 180^{\circ}}{6} = 120^{\circ} \checkmark$$

(ii)
$$\angle GAF = 60^{\circ}$$
 (Straight angle) \checkmark
 $\angle AFG = 60^{\circ}$ (Straight angle with $\angle EFA$) \checkmark
 $\therefore \angle AGH = 60^{\circ} + 60^{\circ} = 120^{\circ}$
(Exterior angle of $\triangle AFG$) \checkmark

(b) (ii) Using Sine rule.

$$\frac{\sin \angle H}{213} = \frac{\sin 7^{\circ}}{136} \checkmark$$

$$\sin \angle H = \frac{213 \times \sin 7^{\circ}}{136}$$

$$\angle H = 11^{\circ} \checkmark$$

$$\therefore \angle R = 180^{\circ} - (7^{\circ} + 11^{\circ}) \text{ (Angle sum of } \triangle)$$
$$= 162^{\circ} \checkmark$$

Using Cosine rule:

$$r^2 = 213^2 + 136^2 - 2 \times 213 \times 136 \times \cos 162^0$$

 $r^2 = 118965.4$
 $r = 345 \text{ m} \checkmark$

(c)
$$7-4x < 13$$

 $-4x < 6 \checkmark$
 $x > -\frac{6}{4}$
 $x > -1\frac{1}{2} \checkmark$

Question 6 (12 Marks)

(a)
$$h = 6(5 + 9t - 3t^2)$$

Greatest height reached when $\frac{dh}{dt} = 0$

(i)
$$\frac{dh}{dt} = 54 - 36t$$
$$0 = 9 - 6t$$
$$\therefore t = 1\frac{1}{2} \text{ sec.} \checkmark$$

(ii) Greatest height when
$$t = 1\frac{1}{2}$$
 s
$$h = 70\frac{1}{2} \text{ m} \checkmark$$

(iii)
$$\frac{dh}{dt} = v$$

$$\therefore v = 54 - 36t \checkmark$$
When $t = 2\frac{1}{2}$ sec, $v = -36$ m/s. \checkmark

(iv)
$$a = \frac{dv}{dt} = -36 \text{ m/s}^2 \checkmark$$

(b)
$$x^6 = 10x^3 - 16$$

 $x^6 - 10x^3 + 16 = 0$
Let $u = x^3$
 $u^2 - 10u + 16 = 0$ \checkmark
 $(u - 2)(u - 8) = 0$
 $x^3 = 2$ or 8 . \checkmark
 $x = \sqrt[3]{2}$ or 2 . \checkmark

(c) (i)
$$y = 2 + \cos^2 x$$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	
y	3	2.5	2	2.5	3	
	y_I	<i>y</i> ₂	<i>J</i> '3	<i>y</i> 4	<i>y</i> ₅	√ √

(ii) Using Simpson's rule

$$A \approx \frac{h}{3} \{ (y_1 + y_5) + 4(y_2 + y_4) + 2y_3 \}$$

$$= \frac{\pi}{3} \{ (3+3) + 4(2.5 + 2.5) + 2(2) \} \checkmark$$

$$= 10\pi \text{ sq. units or } 31.42 \text{ u}^2 \text{ (to 2d.p.)} \checkmark$$

Question 7 (12 Marks)

(a) (i)
$$f(x) = 5 + 4\cos 3x$$

 $f'(x) = 0 + 4(-\sin 3x).3$
 $= -12\sin 3x \checkmark$

(ii)
$$\int_{\frac{\pi}{3}}^{0} \frac{-12\sin 3x}{5 + 4\cos 3x} dx = \int_{\frac{\pi}{3}}^{0} \frac{f'(x)}{f(x)} dx \checkmark$$
$$= \left[\ln\left(5 + 4\cos 3x\right)\right]_{\frac{\pi}{3}}^{0} \checkmark$$
$$= \ln\left(5 + 4\cos 0\right) - \ln\left(5 + 4\cos \pi\right)$$
$$= 2.197 \checkmark$$

(b) (i)
$$P(E) = \frac{50}{200} \times \frac{49}{100} \times \frac{48}{198} = 0.0149 \checkmark\checkmark$$

(ii)
$$P(E) = 1 - P(\text{No tickets between } 1 \& 50)$$

= $1 - \frac{150}{200} \times \frac{149}{199} \times \frac{148}{198} \checkmark$
= 0.58 \checkmark

(c) (i)
$$\int_0^1 2e^{4x} dx = \left[\frac{2e^{4x}}{4} \right]_0^1$$
$$= \frac{1}{2} (e^4 - e^0) = \frac{1}{2} (e^4 - 1) \checkmark$$

(ii)
$$\int_{0}^{\frac{\pi}{2}} 2 \sec^2 \frac{1}{2} \theta \ d\theta = \left[4 \tan \frac{1}{2} \theta \right]_{0}^{\frac{\pi}{2}} \checkmark$$

$$4\tan\frac{\pi}{4} - 4\tan 0 = 4\checkmark$$

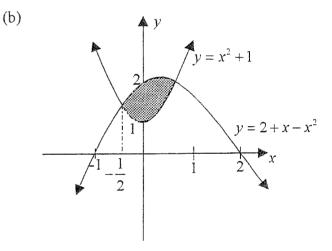
Question 8 (12 Marks)

(a)
$$x^2 + y^2 - 6x + 4y + 4 = 0$$

 $x^2 - 6x + y^2 + 4y = -4$
 $(x^2 - 6x + 9) + (y^2 + 4y + 4) = -4 + 9 + 4 \checkmark$
 $(x-3)^2 + (y+2)^2 = 9 \checkmark$

Centre
$$(3,-2)\checkmark$$

Radius = 3 units \checkmark



$$x^{2} + 1 = 2 + x - x^{2} \checkmark$$

$$2x^{2} - x - 1 = 0$$

$$x = -\frac{1}{2}, 1 \checkmark$$

$$A_{C} = \int_{-\frac{1}{2}}^{1} (2 + x - x^{2}) - (x^{2} + 1) dx \checkmark$$

$$= \int_{-\frac{1}{2}}^{1} 1 + x - 2x^{2} dx$$

$$= \left[x + \frac{x^{2}}{2} - \frac{2x^{3}}{3} \right]_{-\frac{1}{2}}^{1} \checkmark$$

$$= 1\frac{1}{8} \text{ sq. units } \checkmark$$

Advanced Mathematical Publications - Trial H.S.C. 2001 - MATHEMATICS - Solutions

(c) (i)
$$T = T_0 e^{-0.06t}$$

 $T = 8500e^{-0.06 - 4}$
 $T = 6686^{\circ} C \checkmark$

(ii)
$$T = T_0 e^{-0.06t}$$

 $4250 = 8500e^{-0.06t}$
 $\frac{1}{2} = e^{-0.06t} \checkmark$
 $\ln\left(\frac{1}{2}\right) = -0.06t$
 $t = 11.55$ million years. \checkmark

Question 9 (12 Marks)

(a)
$$T_7 = 14$$
, $T_{13} = 32$ in A.P.

(i)
$$a+6d=14$$
 \checkmark
 $a+12d=32$ \checkmark
 $-6d=-18$
 $d=3$ \checkmark
 $a=\pm4$ \checkmark

(ii)
$$S_{70} = \frac{n}{2} [2a + (n-1)d]$$

= $\frac{70}{2} [-8 + 69 \times 3] \checkmark$
= $6965 \checkmark$

(b)
$$V = \pi \int_{3}^{6} \left(\sqrt{y-1}\right)^{2} dy \checkmark$$
$$= \pi \int_{3}^{6} y - 1 dy$$
$$= \pi \left[\frac{y^{2}}{2} - y\right]_{3}^{6} \checkmark$$
$$= \pi \left[\left(\frac{36}{2} - 6\right) - \left(\frac{9}{2} - 3\right)\right]$$
$$= \frac{21\pi}{2} \text{ cu. Units.} \checkmark$$

(c)
$$A_n = P \left(1 + \frac{r}{100} \right)^n$$
$$A_n = 15000 \left(1 + \frac{3.5}{100} \right)^{10} \checkmark$$
$$A_n = 15000 \times 1.035^{10} \checkmark$$
$$A_n = \$21159 \checkmark$$

Question 10 (12 Marks)

(a)
$$T_2 = ar$$
, Limiting sum $= \frac{a}{1-r}$

$$\frac{ar}{\frac{a}{1-r}} = \frac{2}{9} \checkmark$$

$$9ar = \frac{2a}{1-r} \checkmark$$

$$9ar (1-r) = 2a$$

$$9r - 9r^2 = 2 \checkmark$$

$$9r^2 - 9r + 2 = 0$$

$$(3r - 1)(3r - 2) = 0 \checkmark$$

$$r = \frac{1}{3} \text{ or } \frac{2}{3}$$

(b) (i)
$$x + y + x = 200$$

 $2x + y = 200$
 $y = 200 - 2x \checkmark$
 $A = x(200 - 2x) = 200x - 2x^2$
 $\frac{dA}{dx} = 200 - 4x$
 $200 - 4x = 0$
 $x = 50 \checkmark$

When
$$x = 50$$
, $\frac{d^2 A}{dx^2} < 0$
Max. area = $100 \times 50 = 5000 \text{ m}^2$

Circumference of semicircle = 200

$$\frac{\pi d}{2} = 200$$

$$\pi d = 400$$

$$d = 127.32 \checkmark$$

Area of semi-circle

$$A = \frac{\pi r^2}{2} = 6366.2 \text{ m}^2. \checkmark$$

(c) $3\log_4 2 = \log_4 2x - \log_4 5$

$$\log_4 2^3 = \log_4 \left(\frac{2x}{5}\right) \checkmark$$

$$8 = \frac{2x}{5}$$
$$x = 20 \checkmark$$

$$r = 20 \checkmark$$

End of examination