
Mathematics	Question	Series 1 / Item: 29
Name:		Date:
Topic:	APPLICATIONS OF INTEGRATION	
Question 1 [3 + 1	+ 3 = 7 marks]	
	on of a particle undergoing rectilinear motion is $a = \frac{2}{\sqrt{t+4}}$ ms ⁻² . s a velocity of 12 ms ⁻¹ when t = 5	given by
(a) the	velocity when t = 12.	

(b) if and when the particle is at rest.

(c) the distance covered by the particle in the first 5 seconds.

Question 2 [1 + 1 + 1 + 2 = 5 marks]

The velocity - time graph below shows the journey taken by two different cyclists, A and B, along the same straight stretch of road.

Use the v - t graph and the fact that they meet after 20 minutes to find:

(a) the acceleration of A between t = 0 and t = 5.

(b) the displacement of B from his starting position after 20 mins.

(c) the total distance travelled by A.

Mathematics	Question	Series 1 / Item: 29
(d)	the distance apart the cyclists were initially.	
- MAIN		
Question 3	[4 marks]	
A region	is bounded by the curve $y = ln(x+1)$, the line $x = 1$ and the $x = 1$	– axis. Find the volume
of the so	lid of revolution formed when this region is rotated about the	y – axis.
		· · · · · · · · · · · · · · · · · · ·

Question 4 [3+3+1+2+1=10 marks]

A train slows down with an acceleration which is proportional to its velocity.

(a) Show that the velocity at any time t is given by $v(t) = v_0 e^{kt}$, where v_0 is the initial velocity.

Given that initially the particle has a velocity of 60 km h⁻¹, and that the velocity after 5 seconds is 40 km h⁻¹, then:

. .

(b) show that the value of k is $\frac{1}{5} \ln \frac{2}{3}$.

Hence, find:

- (c) the velocity after 10 seconds.
- (d) the time taken to reduce the velocity to 20 km h⁻¹
- (e) the acceleration after 5 seconds.

•	A partials is maying in a straight line, its valocity at any time to is given by	
	A particle is moving in a straight line, its velocity at any time t, is given by v = 6cos 3t	
	The particle is initially at the origin.	
	(a) Find the displacement at any time t.	_
	·	-
	·	
	(b) Show that this particle is undergoing Simple Harmonic Motion.	
		•

(7 + 5 + 4 + 10 + 4 = 30 marks)

Name:

Date:

Topic:

APPLICATIONS OF INTEGRATION

Question 1

(a)
$$v(t) = \int \frac{2dt}{\sqrt{t+4}} = 4\sqrt{t+4} + c$$
 [1]

when
$$t = 5$$
, $v = 12 \implies c = 0$ [1]

$$v(12) = 16 \text{ ms}^{-1}$$
 [1]

(b) particle is never at rest since
$$4\sqrt{t+4} \neq 0$$
 [1]

(c) distance travelled =
$$\int_{0}^{5} 4\sqrt{t+4} dt$$
 [1]

$$= \frac{8}{3}(t+4)^{\frac{3}{2}} \Big]_0^5$$
 [1]

$$= 50\frac{2}{3} \text{ m}$$
 [1]

Question 2

(a)
$$a = \frac{\text{rise}}{\text{run}} = 0.4 \text{ km min}^{-2}$$
 [1]

(b)
$$x = -10 + 15 = 5 \text{ km}$$
 to the right of his starting point. [1]

(c) dist. =
$$5 + 14 + 8 = 27 \text{ km}$$
 [1]

Question 3

$$V_{y} = \pi \int_{0}^{\ln 2} 1 dy - \pi \int_{0}^{\ln 2} (e^{y} - 1)^{2} dy$$

$$= \pi \int_{0}^{\ln 2} 1 dy - \pi \int_{0}^{\ln 2} (e^{2y} - 2e^{y} + 1) dy$$
[1]

$$= \pi \int_{0}^{\ln 2} (2e^{y} - e^{2y}) dy$$
 [1]

$$= \pi \left[2e^{y} - \frac{1}{2}e^{2y} \right]_{0}^{\ln 2}$$
 [1]

$$= \pi \left((4-2) - (2-\frac{1}{2}) \right) = \frac{\pi}{2}$$
 [1]

Question 4

(a)
$$\frac{dv}{dt} = kv$$
 [1]
$$\ln |v| = kt + c$$
 [1]
$$v = e^{kt+c}$$
 [1]

$$v = V_0 e^{kt}$$

(b)
$$40 = 60e^{5k}$$
 [1]
 $lne^{5k} = ln\frac{2}{3}$ [1]
 $5k = ln\frac{2}{3}$ [1]

$$5k = ln\frac{2}{3}$$
 [1]
 $k = \frac{1}{5}ln\frac{2}{3}$

(c)
$$v = 60e^{\frac{1}{5}\ln{\frac{2}{3}(10)}} = 26.7 \text{ (1dec.pl)}$$
 [1]

(d)
$$20 = 60e^{\frac{1}{5}\ln\frac{2}{3}t}$$
 [1]
 $t = 13.6 \text{ (1dec.pl)}$

(e)
$$a = kv(5) = \frac{1}{5} \ln \frac{2}{3} 40 = -3.2 \text{(1dec.pl)}$$
 [1]

Question 5

(a)
$$x = 2\sin 3t + c$$
 [1]
when $t = 0$, $x = 0 \Rightarrow c = 0$ [1]

$$\begin{array}{rcl} \therefore & x = 2\sin 3t \\ \text{(b)} & a = -18\sin 3t \\ & = -9 \left\{2\sin 3t\right\} \\ & = -n^2x \end{array} \hspace{0.5cm} [1]$$

S.H.M.

(7 + 5 + 4 + 10 + 4 = 30 marks)