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STANDARD INTEGRALS

_[x”dx: = 1 x™ . n# -1, x#0, ifn<0
n+1
%—aﬁc = Inx, x>0
fe“dx = %ea", a#0 N
J.cosaxafx =—cl;sinax, a#0
sinax dx = = Cllcosa:x, az0
sec?ax dx = zll-tanax, az0
secaxtan ax dx = %secax, az0
1 _ 1 -1X
J-mak —atan a,aio
J-'~—l————cbc = sin™ % a>0, —a<x<a
2_ 2 a
@ -x?)

J.——I-—-dx = 1n{x+,/(x2—a2) }, lx] > lal

J- 1/_(;——2%)— dx = In {x+ J &2 +a2)\}

NOTE : Inx=log,x; x>0




Question One

() For the function f(x) = e**" find the inverse function
/'(x)and hence show that f[f~'(x)]= £ '[f(x)] = x (3 marky)

®) Solve the inequality > 2 and represent the
x+2 x-3
solution on a number line. (3 marks)
(o ;
© If > 2(2)"" = 7661, find n
r=1 (3 marks)
(d) The word EQUATION contains all five vowels. How

many 3-letter 'words' consisting of at least 1 vowel and 1
consonant can be made from the letters of EQUATION? marks)

Question Two

@) Prove that 20054 - =tan24
cosecd - 2sin 4 (3 marks)
®) Show that tan™ x = sin "' ——
vi+x 2 (3 marks)
(c) Write down the expansion for sin(a — 3)and hence prove
@ a, [x - .
Find /fx “— | and hence find the primitive function of
x :
2-Inx
X 2 (4 marks)

Question Three

(a) The sides of a square sheet of cardboard are each 12m long. At
each corner a square of x*m” is cut away. The sides of the sheet
are then turned up to form a box. Calculate:

)] the values of x so that the box has a volume of 108m®

(ii) the value of x so that the box has a maximum volume (5 marks)




(b)

(¢y

Question Four

(2)

(b)

(©)

Use mathematical induction to show that for all positive

. “ a” -1
integers n, » @~ = —w—
r=1 (a - l)a (4 marks)

A polynomial P(x)=ax® +bx* +cx+d has zeroes at -2,

2and £.

It leaves a remainder of 12 when divided by x - 1.

Find the values of a, b, cand d. (3 marks)

The tangent at the point P(2ap,ap’®) on the parabola
x* = 4ay cuts the y-axis at . The line through the focus

S parallel to this tangent cuts the directrix at V. M is the
mid-point of 7V. Find the locus of M as P moves on the
parabola. . (5 marks)

x Yy z (3 marks)

PTis a tangent to the circle and PBC is a secant. Disa
point on PBC such that 7D = TB.
Prove that ZLCTD = £P. (4 marks)




Question Five

(2)
€y
(i1)
(iii)
(®)

Question Six

(a)

@
(i)

The graph shown below shows the cooling curve for a
container of paraffin oil which as been heated to a
temperature of 250° then allowed to cool in air whose
temperature is 18°C.

25({ N

100 -~~~

18f-—— -
0 >t (mins)

It is known that the rate at which the temperature T of the
oil is changing is given by 4/, = k(T - M)

where M is the temperature of the surrounding air and t is
the time elapsed after cooling begins, in minutes.

Show that 7 = M + Ae” is a solution to the given
equation.

Use the graph to write down the values of M and 4.

Find the value of £ to one significant figure if the
temperature of the oil drops to 103.3°C in 50 minutes of
cooling.

Write the equation 2tan 8 —3secd = ~2+/3 in the form
asin @ +bcosf =c, and then by expressing the left hand
side as sine of a compound angle, solve the equation for
0<6<360°

A particle moving in simple harmonic motion, passes
through the centre of oscillation O with a velocity of
Scmy/s. If it has a period of & seconds, find

the value of »

the amplitude of the motion

(6 marks)

(6 marks)

(SN




(i)

(b)

()
@)
(it)
(ii)

Question Seven

@ O

(i)

(b)

the time taken for the particle to first reach x = 1.5cm (5 marks)

Express sec(sin ™' x) in terms of x and hence write down

. -1
jSCC(Sm )C)CbC (-1<X<1) (2 marks)

The acceleration of a body moving in a straight line is
given by

d'x 24

dar  x?
where x is the displacement from the origin after ¢
seconds. When ¢ = 0 the body is 3 metres to the right of

the origin with a velocity of 4n/s.

Show that the velocity v of the body in terms of x, is

43
NP

Find an expression for #in terms of x

y =

How long does it take for the body to reach a point 10m

to the right of the origin? (5 marks)

Show that the range of flight of a projectile fired at an
angle of ¢ to the horizontal and at a velocity v is
v? sin 2
g
where g is the acceleration due to gravity

A cannon fires a shell at an angle of 45° to the horizontal
and strikes a point 50m beyond its target. When fired
with the same velocity at an angle of 30° it hits a point
20m in front of the target. Calculate

@

(II) the correct angles required to hit the target

the distance of the target from the cannon

(7 marks)
By considering the value of (1+x)*" when x = 1, prove

that
n 2n
Z( ] — 22n~1 +
=0\ *

(2n)!

2(11!)2

(5 marks)
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@) ) =hx-1
b)x<-Tor-2<x<3

(c) n=9

(2) (a), (b) Proofs

(c) sinccosfP —cosasinB; Proof

@ Bx_ 1.

G)(a)(@) x=3 and 2 “g‘/? ~1.15m
(ii) x=2m

(b) Proof

(c)a=8,b=-12,c=-32,d=48

71N

),

(¢) Proofs e

(5) (a) (i) Proof

(i) M=18°C; 4 =232°C
(i) & ~~0.002(to 1 .£)
(b) 6=71°25 or348°35
© @6 n=2

(i) a = 2.5cm

(iii) 7= 0.32 sec

1
1-x

. -1
; 8Sin x+c¢

(b)

(c) () Proof

(i) r~2.5 sec
(7)(a)(@) Proof
G) (@) T=472.5m
(D) a=32°22 or 57938

(b) Proof

C.EM. Copyright 1999

-7 -




A.R.C

Question One

(a)

(b)

SUGGESTED SOLUTIONS for 3 UNIT MATHS - 1999

flx)=y=e"

x:ey+l

y+l=Inx
y =Inx—1 the inverse function f'(x)

S e

:elnx
=X
S ()]=1n[e*]-1
=(x+1)Ine-1
=x+1-1
=X
1 2
>
x+2 x-3

(x—=3)*(x+2)22(x-3)(x+2)*
(x=3)(x+2)=2(x-3)x+2)* >0
(x=-3)(x+2)[x-3-2(x+2)]=20
(x=3(x+2)[x-3-2x-4]20
(x=3)x+2)(=x-7)20.......... (H

Consider (x -=3)(x+2)(-x-7)=0
e 2 e

Test x = -10, inequality (1) holds true

Test x = -5, inequality (1) does not hold true
Test x = 0, inequality (1) holds true

Test x = 4, inequality (1) does not hold true

.. Solutionis x<-7 or —2<x<3
(x#-2),(x#3)

From the graph of y = (x-3)}(x+2)(-x-7)




()

(d)

Question Two

(2)

Solutionis x<-7 or -2<x<3

n

ST U PASE AV T
25(2) _2+2(2)+2(2) +...+2(2)

r=1

a=-r=2
2
s a(r” -1)
r—1
312" -1
2( )=766%
2-1
n 1533
32 —1)27
3(2"-1)=1533
2" -1=511
2" =512
n=9

There are 5 vowels and 3 consonants. For words with 2
vowels and 1 consonant the number of selections is

’C,x*C, =30. For words with 1 vowel and 2 consonants
the number of selections is *C,x’C, =15.

.. The total number of selections = 45
But each selection may be arranged 3! ways.
. The total number of words =45 x 3!
=270

2C0SA

cosecA - 2sinA
2cos A4

=1 —2sin 4

_ 2cos4

" 1-2sin’ 4

sin A

_ 2sin Acos 4

~ 1-2sin’ 4

_sin24

" cos24

=tan24

= RHS

LHS =




(b)

(©)

(d)

Let tan'x =«
Stang = x

I+x X

From the triangle sina =
1+ x?

sin(@ — f) = sin ¢ cos f —cosasin f
Put ¢ =0 and =6

sin(—@) = sin 0cos@ — cosOsin &

=0-(1)sin @
=—siné
d/ [Inx =x'§—lnx(l)
A
_1-Inx
=

2-Inx 1+1-Inx
[ s
1 1-lnx
:J-(x_2+ x? )dx

= Ix‘zaﬁc +J'(l -xlzn xja&

x' Inx
=2 +—+¢
-1 X

_Inx 1

X X




Question Three

(@ @O

12-2x

12-2x x
V =x(12-2x)*
=144x — 48x” + 4x°
- 4x® — 48x* +144x =108
x> -12x* +36x-27=0
Let f(x)=x’-12x* +36x—27
f(3)=27-108+108-27
=0
.. x—3 1s a factor
x2-9x+9
x-3 jx3 —12x% +36x~27

x* -3x?
—9x% +36x
-9x* +27x
Ox-27
O9x-27
0
S =3)(x?=9x+9)=0

x=3 or

L9 +./81-4(1)(9)

2
_9+481-36
2
_9+4/45

2
94345
2

9+3v5 . . .
V5 is rejected since it is >12

X =

. Values of x so that box has a volume of 108m® are




3m and

9-345
2

m (=~ 1.15m)

(i) V =4x’ —48x* +144x
dyf =12x" —96x+144=0
for maximum/minimum
x*-8x+12=0
(x-6)(x-2)=0
rejectx=6; x=2

/= 24x— 96
Whenx=2, 4/ ,=48-96
=-48<0

. maximum
.. the box has a maximum volume when x =2m

(b) A 1
dal ==ttt —
pun a a a

We are required to prove that

1 1 1 a"” -1 e .
—+—+...+— =-———— for all positive integers »
a a a’” (a-1a”

Testn=1:

LHS =L
a

RHS = a-1
(a-Da

.. The result is true forn=1

Assume that it is true forn =&

1 1 1 k_ 1
i 1 1 a 1
-—-i-—2 +..,+—k =3 i
a a a* (a-la ;s

Putn=k+1




, 1 1 1 |
LHS :;+?+.,.+?+ak”

_at -1 1
C(@a-Da*t g
_a(a"—l)+(a—1)
- (a—l)a"”
a'—a+a-1
(a—-l)akﬂ
ak+1 _1
- (a—l)akﬂ
Hence if the result is true forn =k, it istrue forn =k + 1.

But it is true for » = 1. Therefore it is true for » =2 and
so, by mathematical induction, for all positive integers n.

(c) Since P(x) has zeros at -2, 2 and 2, P(x) may be
expressed in the form
P(x)=k(x+2)(x—2)2x —3) where k is a real number.
Now P(1) = kGB)(-1)(-1) =12
k=4
S P(x)=4(x+2)(x-2)(2x-3)
= (x> -4)(8x-12)
=8x’ —12x* —32x +48
na=8,b=-12,c=-32,d=48

Question Four

(2)

Gradient of tangent at P =p
Equation of tangent at P; y=px—ap’




It cuts the y-axis at -ap’

7(0,-ap”)
Equation of V§: y=px+a
y-coordinate of V' = -a
-a=px,+a
-2a
X, =—
P
V(:Zz,_aj
p
=t _c@ca
2 2
M2 —ap’-a
p’ 2
—a _ -a
X=— p=—
p x
_-ap'-a_-a(z) -a
YT 2
y= —— which is the locus of M.

(b) 3°=6°
- xlog3 =zlog6
Similarly ylog2=2zlog6
so that
‘= zlog6

- log3
_zlogb6

r= log2

1 _ log3 N log2
y zlogé6 zlog6

1
So—4
x

_log3+log2
- zlog6
_ logé6

- log6

N|p—a [ ]




(c)

Question Five

(ii)

(iii)

ZTDB = £LC + ZLCTD(exterior £ of ACTD)

and LTBD = /P + ZPTB  (exterior £ of APTB)

But LTDB = ZTBD (base s of isosceles ATBD)

S LC+ LCTD = LP + LPTB

But LPTB=ZC (£ between tangent and chord)
o LCID = £P

T =M+ Ae"
L= k- Ae*
= k(T - M)
o T =M + Ae" is a solution to the equation

M=18°C
A =1250-18=232°C

T =18+232e"
When ¢ = 50 mins and 7= 103.3°C
103.3 =18 +232¢%*

5232 =853

ok _ 853
232

50k = ln—sé'}-
232

85.3
_ In 37

50
~ —0.002 (one significant figure)

k




(b)

Question Six

(a)

®

(i)

(iii)

2tan@ —3secd :—2\/3
2sin @ 3
- =23
cos@ cos@
2sinf -3 = —2\/§c059
ie. 2sin@ +2J§cos€ =3
Let 2sin @ +2+/3 cosé = rsin(@ + @)

where r=\/22+(2\/§)2 =16 =4
and tanazg—‘z/—g—z\/g

T
a=—
3
s 4sin(@+5)=3
sin(@ +%£)=1

S 8+60°= 48935, 180° - 48°35', 360° + 48°35'

reject

6 =71°25" or 348°35'

r2e
n
27

T=—
n

n=2

When7=0,x=0and v= 5cm/s
v =n*(@® -x%)

25 = 4(a* - 0)
al=%
a=3cm

Let x = asin(nt + ) describe the SHM
Whent=0,x=0sothat =0

.. X =asin nt
x=3sin2t
When x=1.5cm




(b)

(c)

(1)

Isec(sin ' x)dx = j

z = zsin 2
2 2
sin2t =0.6

2t =0.64
t=0.32s.

Let sec(sin ' x)=y

Put sin'x=«
then sina=x (-1 <x<1)

Ly=seca

1

Ji-x?

1

1-x2

dx
=sin"x+c¢

v2=2j;dx

=2f e

= 48[ xdx

=48x7 +¢
vi=%8_.
Whent=0,v=4andx=3
sol6=%+c

©c=0

[
N
o0

<
Il

AN

<
1
= 113 -

g




(iif)

Question Seven

@ O

Sot=

63 2

When x = 10
3
2

. 10 1

63 2

~ 2 5sec

Starting with
y=visina-1gr’
X =vtcosa
When y =0,
vising—1gt’ =0
Hvsina—+gt)=0
_2vsina
g

t=0ort

W




‘= v(2Zvsin a)cosa

g
_ 2v’sinacosa
g
2 .
le Range= v_sinZa
g
(i1) (D Let T=distance from cannon to target:
2 .2 o
When o= 45°, T+50= 2129
g
vZ
T+50=— ... (1)
g
2 2 o
When o= 30°, T —20= 2S00
g
2
T-20=23
2g
(1) +(2):
I'+50 2
T-20 43

V3(T +50) = 2(T - 20)
V3T +50/3 =27 - 40
T(2-+/3)=40+5043

40+ 503
7=
2-43
=472.5m
II 2
M ys0? (1)
g
2 .
roYsm2e o
g
Substitute 7=472.5,

vZ
522.5 = —

g

2 .
4725 = v©sin 2

g

4725 )
——— =sin 2
522.5

. 2a=64°4'or 115°16'
a=132°22'or 57°38'

12




(b)

l\)

5 )
E0H
( (2n)!

Zn) 1
k 5n'(2n n)!

. a7 (@)l
st o -~
g(k) 2(nty’

n 2n\ LAY
ie. =214 (m) :
kZoL . 2(nl)?

1%






