(2)

ASCHAM SCHOOL

FORM 5 PRELIMINARY COURSE EXAMINATION MATHEMATICS

Time allowed: 3 hours

AUGUST 2002

- All questions should be attempted.
- All necessary working should be shown.
- Marks may not be awarded for careless or badly presented work.
- Do each question in a different booklet.
- Write your name and your teacher's name on each booklet.
- Clearly label the front of each booklet with the number of the question.
- Approved calculators may be used.

QUESTION 1

- a) Solve $2+3x \le 8$ (1)
- b) Find the exact value of $\frac{\frac{2}{5} + \frac{2}{3}}{1 \frac{4}{15}}$ (2)
- c) Factorise completely $8x^3 + 1$ (1)
- d) Show that $\frac{4}{2+\sqrt{5}} \frac{1}{9-4\sqrt{5}}$ is rational. (4)
- e) Solve the simultaneous equations

$$x-y=1$$

$$2x + y = 5 \tag{2}$$

f) Subtract 5x+2y-3 from x-7y+9

QUESTION 2

- a) Mark on a number line the values of x for which $|x+1| \ge 2$ (3)
- b) Express 0.25 as a fraction. Show all working. (3)
- c) The equation AB is y = 2x + 10. The point C is (4,8)

(2)

i) Show that OC and AB are parallel.

ii) State why $\angle ABO = \angle BOC$ (1)

iii) The line OB divides the quadrilateral OABC into two congruent triangles. Prove that ŌABC is a parallelogram

QUESTION 3

The line g cuts the x axis at L(-4,0) and the y axis at M(0, 3) as shown. N is a point on the line g, and P is the point (0, 8).

Copy the diagram into your writing booklet

a) Find the equation of line g (2)

b) By considering the lengths of ML and MP, show that ΔLMP is isosceles. (2)

c) Find the gradient of line PL. (1)

d) M is the midpoint of the interval LN. Find the coordinates

of the point N. (2.5)

e) Show that ∠NPL is a right angle. (2.5)

f) Find the equation of the circle that passes through N, P and L (2)

QUESTION 4

- a) Sketch the curve $y = \log_{10}(x+1)$ (2)
- b) i) Sketch the graph of $y = x^2 6$ and label all intercepts with the axes.
 - ii) On the same set of axes, carefully sketch the graph of y = |x| (1)

(2)

- iii) Find the coordinates of the two points where the graphs intersect. (4)
- iv) Hence solve the inequality $x^2 6 \le |x|$ (1)
- c) A function is defined such that $f(x) = 2x^3 x$. Is this function odd, even or neither? Show all working. (2)

QUESTION 5

- a) Simplify $\frac{16}{2^{3x} \times 8^{1-x}}$ (2)
- b) Solve for x. $3^{2x} - 10(3^x) + 9 = 0$ (3)
- Solve $2\log_5 2x = \log_5(x+5)$ (3)
- d) The first four terms of an arithmetic series are 15 8 1 + 6
 - i) Find the 30th term
 - ii) Hence or otherwise find the sum of the first 30 terms of the series

(2)

QUESTION 6

a) If α and β are the roots of $5x^2 - 7x - 10 = 0$ find:

i)
$$\alpha + \beta$$
 (1)

ii)
$$\alpha\beta$$
 (1)

iii)
$$\frac{1}{\alpha^2 \beta} + \frac{1}{\alpha \beta^2}$$
 (2)

iv)
$$\alpha^2 + \beta^2$$
 (2)

b) Find the values of k for which the quadratic equation,

$$3x^2 + 2x + k = 0$$

has no real roots (2)

- c) i) Sketch the parabola P which has focus (2,3) and directrix y=-2. On your diagram show the focus, directrix and vertex. (3)
 - ii) Find the equation of P (1)

QUESTION 7

- a) Differentiate:
 - i) $\frac{3}{2}x^2 + 7$ (2)
 - $ii) \qquad \frac{2}{3x^2} \tag{2}$
 - $\frac{1}{1+x^2} \tag{2}$
 - -iv) $x^2(2x-1)^5$ (2)
 - $y = \sqrt[3]{4 x^2}$ (2)

b) The graph of the curve y = f(x) is drawn below. In your answer booklet draw the corresponding gradient function for this curve, clearly indicating all the important values of x.

QUESTION 8

Find, in general form, the equation of the normal to the curve

$$y = x^2 + 3x$$
 at the point (1,4) on it. (5)

- b) An infinite geometric series has a first term of 8 and a limiting sum of 12. Calculate the common ratio. (2)
- c) A ball is dropped from a height of 4 metres onto a hard floor and bounces. After each bounce the maximum height reached by the ball is 75% of the previous maximum height. Thus after it hits the floor it reaches a height of 3 metres before falling again, and after the second bounce it reaches a height of 2.25 metres before falling again.
 - i) What is the maximum height reached after the third bounce? (1)
 - ii) What kind of sequence is formed by the successive maximum heights? (1)
 - iii) What is the total distance travelled by the ball from the time it was first dropped until it eventually comes to rest on the floor? (3)

QUESTION 9

- a) If $\sin \theta = \frac{2}{5}$ for $90^{\circ} \le \theta \le 180^{\circ}$ and $\sin \beta = \frac{1}{2}$ for $0^{\circ} \le \beta \le 90^{\circ}$ Find the exact value of:
 - i) $\cos \beta$ (1)
 - ii) $\sec^2 \beta$ (2)
 - iii) $\tan \theta$ (3)
 - iv) $\cos ec\beta + \tan(90 \theta)$ (2)

b)

Ship A is 20 nautical miles from a port P and is on a bearing of 055°. Ship B is 27 nautical niles from P and is on a bearing of 115°.

- i) Copy the diagram into your answer booklet, indicating all the given information.
- ii) Show that $\angle APB = 60^{\circ}$ (1)
- iii) Use the cosine rule to determine the distance between the two ships, giving your answer correct to 3 significant figures. (2)

QUESTION 10

a)

ABCD is a rhombus, AX is perpendicular to BC and intersects BD at L

- i) Copy the diagram into your answer booklet and state why ∠ADB = ∠CDB.
 (1)
- ii) Prove that the triangles ALD and CLD are congruent. (2)
- i) Show that ∠DAL is a right angle. (1)
- iv) Hence or otherwise find the size of ∠LCD (1)
- b) i) Show that $m^2 2m + 9 = (m-1)^2 + 8$. What can you say about the expression $m^2 - 2m + 9$ for all real values of m? (2)
 - ii) Hence prove that the equation $x^2 (m+1)x + (m-2) = 0$ has real and different roots for all real values of m (2)
- c) If the quadratic equation $x^2 2px q^3 = 0$ has one root the square of the other, show that $p = \frac{q(q-1)}{2}$ (3)

FORM	5 JUNIT MATHEMATICS
	Question!
a)	32=6
b)	卷二号二月
c)	(2x+1)(4x-2x+1)
a)	4 x 2-55 - 1 x 9+4 2+5 2-5 9-45 9+4
	†
	= 8-455 <u>9+45</u>
	= -8+4V5 - 9-4V5
-	= 17 which is vational
e)	x-y=1 -0
2	2+4=5 -2
(D+@ 32=6
	x=2
	y = 1
f)	y=1 x-7y+9-(5x+2y-3)
	=x-7y+9-5x-2y+3
	= x-7y+9-5x-2y+3 =-4x-9y+12 QUESTION 2
	QUESTION 2
	12+1/72
	x+17,2 or x+15-2
	X7/ or 26-3
	⟨-3 ; →
b)	hed = 0-2525
	1002 = 25-25
ec i cycle	2 = 0.25
į s	99x = 25 25
•	$x = \frac{25}{99}$
į	-0.25 = 25

AUGUST EXAM 2002

2) i)
$$M_{0c} = \frac{g-0}{4-0} = 2$$

grad Ab = 2

i. Ab 110c (Rame grad)

ii) LABO = LBOC (alt LC, Ab 110c)

Ab 10c (proved above)

i. OABC is all gram (prophides)

29 Ab g: y = \frac{2}{4} \times t + 3

b) dml = \sqrt{(4-0)^2 + (0-3)^2}

= \sqrt{16+9}

= 5

i. Ample is isoscales (2 equal codo)

c) $M_{0c} = \frac{g}{4} = 2$

d) Let N be (2, y)

-4+n = 0 \quad 0 + y = 3

\times 2 + 4

\quad -1 - 1

\times 2 + 2

d) Let N be (2, y)

-4+n = 0 \quad 0 + y = 3

\times 2 + 4

\quad -1 - 1

\times 2 + 2

d) Mon = \frac{g-1}{2} + 2

\times 2 + 4

\quad -1 - 1

\times 2 + 4

\quad -1 - 1

\times 2 + 4

\quad -1 - 1

\times 2 + 2

\times 2 + 4

\quad -1 - 1

\times 2 + 2

\times 2 + 4

\quad -1 - 1

\times 2 + 2

\quad -1 - 1

\quad

b) Let 3 = 11

 $u^{2} - 10u + 9 = 0$ (u - 9)(u - 1) = 0

```
or u=1
 : 37 = 9 or 37 = 1
    X=2 or X=0
c) log = (2x) = log = (x+5)
       4x -x-5=0
    (4x-5)(x+1)=0
      x= 5/4 or x=-1
  But can't have lop of neg no
d)i) T_{30} = -15 + 29 \times 7
= 188
 ii) $20 = 2 (a+l)
          = 15 (-15 +188)
a) i) x+p= 35
  11) 2 + 1 = BTZ
|V\rangle \propto^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta= (\frac{7}{5})^{2} - 2x - 2
b) No real roots if 160
    4-12440
       -12k 2-4
         K > 言
```



```
)i) m-2n+9.= m2-2n+1+8
                = (M-1)^2 + 8
      (M-1) 200 prall m ( perf equare)
   -. (m-1) 2+8 70 for all m
    : M - 2m+9 >0 for all m
  11) 22-(m+1)x+(m-a)=0
    1 = [-(m+1)] - 4x1x(m-2)
      = m2+ 2m+1 -4m+8
      = M2- 2m+9
      > 0 for all in ( from i)
   . roots are real + deflerent for all real on.
c) 22-2px-93-0
   Let roots be a & a
    -9+92=2p
```