Ascham School

Form 5 Preliminary Course Examination

Mathematics

August 2003

Time allowed: 3 hours

You will be allowed 5 minutes of reading time.

Instructions:

- · All questions should be attempted
- · All necessary working should be shown
- Marks may not be awarded for careless or badly presented work
- Do each question in a separate booklet
- Write your name and your teacher's name on each booklet
- Clearly label the front of each booklet with the number of the question
- Approved calculators may be used.

Question 1 (12 marks)

a) Evaluate to 3 significant figures
$$\sqrt{(1.3)^4 + (3.4)^2}$$
 (1)

b) Express in scientific notation
$$\frac{3.78 \times 10^7}{9 \times 10^3}$$
 (1)

c) Simplify:
$$5\sqrt{3} + \sqrt{20} - 2\sqrt{12} + \sqrt{45}$$
 (2)

d) Solve for x and y if
$$x + y = 6$$
 and

$$2x - y = 9 \tag{2}$$

e) Factorise:
$$3x^2 + 8x - 16$$
 (2)

f) Express
$$\frac{2\sqrt{2}-3}{2\sqrt{2}+3}$$
 with a rational denominator. (2)

g) Solve for x:
$$x^2 = 4x$$
 (2)

Question 2 (12 marks) Start this question in a new booklet

a) Solve
$$\frac{x-1}{3} = 1$$
 (2)

b) Solve
$$|3x-1| = 4$$
 (2)

c) Find the values of x for which
$$|1-2x| < 5$$
 (3)

d) Find the exact value of
$$\sin 225^{\circ}$$
 (1)

e) If
$$\tan \theta = -\sqrt{3}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$, find θ (2)

f) Simplify
$$\frac{1-\cos^2\theta}{\sin\theta\cos\theta}$$
 (2)

(3)

Question 3 (12 marks) Start this question in a new booklet

a) Solve for
$$x$$
: $9^x = \sqrt{27}$ (2)

b) If
$$\cos \theta = -\frac{1}{3}$$
 and $\tan \theta < 0$, find the value of $\sin \theta$ (2)

c) Find
$$\lim_{x\to 3} \frac{x^2-9}{x^2-x-6}$$
 (2)

d) Simplify
$$\frac{\log_x 3}{\log_x 9}$$
 (2)

- e) The first three terms of an arithmetic series are 12, 17 and 22.
 - i) Find the twenty-fifth term of this series. (2)
 - ii) Find the sum of the first twenty-five terms. (2)

Question 4 (12 marks) Start this question in a new booklet

a) For the function
$$f(x) = 2\sqrt{25 - x^2}$$
 find the domain. (1)

- b) For the the curve $y = -x^2 + x + 12$
 - i) Draw the graph (2)
 - ii) Find the range if the domain is $0 \le x \le 5$ (2)
- c) Given $f(x) = \begin{cases} x^2, & x < 0 \\ 2x, & 0 \le x \le 3 \\ 4, & x > 3 \end{cases}$
 - (i) Find f(-2) (1)
 - (ii) Sketch the curve of y = f(x) (3)
- d) On a number plane diagram clearly show the region where $x^2 + y^2 \le 9 \quad and \quad y > \frac{1}{x}$ (3)

Question 5 (12 marks) Start this question in a new booklet

A(2,-2), B(-2,-3) and C(0,2) are the vertices of a triangle ABC.

- a) Plot the points to form the triangle ABC (1)
- b) Find the length of AC and the gradient of AC (3)
- c) Show that the equation AC is 2x+y-2=0 (2)
- d) Calculate the perpendicular distance of B from the side AC (2)
- e) Find the coordinates of D such that ABCD is a parallelogram. (2)
- f) Find the area of the parallelogram ABCD. (2)

Question 6 (12 marks) Start this question in a new booklet

$$x^2 + (m-2)x + 4 = 0$$

has no real roots

- b) Find the equation of a parabola with focus (1,2) and whose directrix is y = -4
- c) If α and β are the roots of the equation $x^2 + 5x 8 = 0$

find the value of

$$i$$
) $\alpha + \beta$ (1)

$$\alpha\beta$$
 (1)

iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 (2)

iv)
$$\alpha^2 + \beta^2$$
 (2)

Question 7 (12 marks) Start this question in a new booklet

- a) Differentiate
 - i) $\frac{1}{2}x^3 x \tag{1}$
 - ii) $x^3(1-x)^4$ (2)
 - iii) $\frac{x^2}{1+x}$ (2)
 - $iv) \qquad \frac{x^2 + 2x}{\sqrt{x}}$ (2)
 - $v) \qquad \frac{1}{3x^2} \tag{2}$
- b) Find the equation of the normal to the curve $y = x^2 + \frac{5}{x} 2$, at the point where x = 1. (3)

Question 8 (12 marks) Start this question in a new booklet

a) (the figure below is not to scale)

ABCD is a rhombus with \angle BDC = 48°. ABE is an equilateral triangle.

- (i) In your examination booklet draw a neat sketch showing this information
- (ii) Find the size of ∠EAD, giving reasons for your answer (4)
- (iii) Find the size of ∠EDA, giving reasons for your answer (2)

Two geologists on a large flat mining claim drive 20 km from point A on a bearing of 150^0 T to point B. They then drive 40 km on a bearing of 020^0 T to point C.

- Copy the above diagram into your examination booklet
 and fill in the data
 - ii) Show that $\angle ABC = 50^{\circ}$ (2)
- iii) Find the distance of point C from point A to the nearest kilometre. (2)

Question 9 (12 marks) Start this question in a new booklet

a) The graph of the curve y = f(x) is drawn below. Copy the diagram into your answer booklet and draw the graph of the corresponding gradient function showing clearly all the important features. (2)

b) A man wishes to form a rectangular enclosure using his existing fence on one side. He has 20 metres of fencing material available to form the other three sides which are x metres, x metres and y metres respectively.

i) Show that the area of the enclosure he can form is given by 2x(10-x) square metres.

2x(10-x) square metres. (2) ii) What are the dimensions of the largest area he can fence? (2)

c)
In the triangle PSU, QR II SU,
SP II TR, ST = 7.5 cm,
PQ = 10 cm, PR = 12 cm
and UT = 15 cm.

- i) Prove \triangle PQR is similar to \triangle PSU (2)
- ii) Hence find the length of SQ (2)

(2)

c) For what values of x does the series $x+x(3+x)+x(3+x)^2+\dots$ have a limiting sum?

Question 10 (12 marks) Start t

Start this question in a new booklet

 a) Find the locus of points P such that PA is perpendicular to PB where A is the point (-1,4) and B is the point (2,3).
 Describe the locus fully.

(4)

(2)

- b) A thin sheet of smooth metal is in the form of a sector of a circle with OB and OA as bounding radii each of length 10 cm, and angle AOB is 60°.
- Find the exact length of the arc AB
- ii) The sheet is now bent to form a right circular cone by welding the bounding radii OA, OB together. On the surface of this cone a string is pulled tight starting with one end fixed at the point A and passing once round the cone to the other end P which is at the midpoint of OA (see diagram). Find the exact length of this string.

c) Using the triangle below, find an expression for $\cos \theta$ or a value for $\cos \theta$ (if it exists) for each of the set of conditions below. Give clear explanations.

 $a^2 = b^2 + c^2$ (1)

- $ii) a = b + c \tag{1}$
- iii) a > b + c (1)
- iv) a < b + c (1)

END OF EXAM

(b)i) $y = -x^2 + x + 12$

= - (x -4 \(\frac{1}{2}\) +3)

QVESTIONS

a)
$$x^{2} + (m-2)x + 4 = 0$$
 $A = (m-2)^{2} - 4x4$
 $= m^{2} - 4m + 4 - 16$
 $= m^{2} - 4m + 4 - 16$
 $= m^{2} - 4m + 4 - 16$
 $= m^{2} - 4m + 4 - 12$

Fer near real resols $A \le 0$
 $(m-6)(m+2) \le 0$
 $= 2 \le m \le 6$

(3)

b) Fecus $(1,2)$ Direc, $y = -3$
 $(x-1)^{2} = 4 \times 3(y+1)$
 $(x-1)^{2} = 12(y+1)$

(3)

c) $x^{2} + 5x - 8 = 0$

i) $x + \beta = -5$

ii) $x + \beta = -5$

ii) $x + \beta = -5$

iii) $x + \beta = -5$

iiii) $x + \beta = -5$

iiii) $x + \beta = -5$

iiiiiiiiiiii

