

2014 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Int Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks - 70

(Section I) Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-13

60 marks

- Attempt Questions 11-14
- · Allow about 1 hour and 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a_i > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

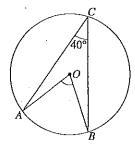
NOTE: $\ln x = \log_e x$, x > 0

Section I

10 marks
Attempt Questions 1–10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

The points A, B and C lie on a circle with centre O, as shown in the diagram. The size of $\angle ACB$ is 40°.



NOT TO SCALE

What is the size of $\angle AOB$?

- (A) 20°
- (B) 40°
- (C) 70°
- (D) 80°
- 2 Which expression is equal to $\cos x \sin x$?
 - (A) $\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)$
 - (B) $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)$
 - (C) $2\cos\left(x+\frac{\pi}{4}\right)$
 - (D) $2\cos\left(x-\frac{\pi}{4}\right)$

- What is the constant term in the binomial expansion of $\left(2x \frac{5}{x^3}\right)^{12}$?
 - (A) $\binom{12}{3} 2^9 5^3$.
 - (B) $\binom{12}{9} 2^3 5^5$
 - (C) $-\binom{12}{3}2^95^{\frac{1}{3}}$
 - (D) $-\binom{12}{9}2^35^9$
- 4 The acute angle between the lines 2x + 2y = 5 and y = 3x + 1 is θ .

What is the value of $\tan \theta$?

- (A) $\frac{1}{7}$
- (B) $\frac{1}{2}$
- (C) 1
- (D) 2
- 5 Which group of three numbers could be the roots of the polynomial equation $x^3 + ax^2 41x + 42 = 0$?
 - (A) 2, 3, 7
 - (B) 1, -6, 7
 - (C) -1, -2, 21
 - (D) -1, -3, -14

- 6 What is the derivative of $3\sin^{-1}\frac{x}{2}$?
 - (A) $\frac{6}{\sqrt{4-x^2}}$
 - (B) $\frac{3}{\sqrt{4-x^2}}$
 - (C) $\frac{3}{2\sqrt{4-x^2}}$
 - (D) $\frac{3}{4\sqrt{4-x^2}}$
- 7 A particle is moving in simple harmonic motion with period 6 and amplitude 5.
 Which is a possible expression for the velocity, ν, of the particle?
 - (A) $v = \frac{5\pi}{3} \cos\left(\frac{\pi}{3}t\right)$
 - (B) $v = 5\cos\left(\frac{\pi}{3}t\right)$
 - (C) $v = \frac{5\pi}{6} \cos\left(\frac{\pi}{6}t\right)$
 - (D) $v = 5\cos\left(\frac{\pi}{6}t\right)$

- 8 In how many ways can 6 people from a group of 15 people be chosen and then arranged in a circle?
 - (A) $\frac{14!}{8!}$
 - (B) $\frac{14!}{8!6}$
 - (C) $\frac{15!}{9!}$
 - (D) $\frac{15}{9!}$
- The remainder when the polynomial $P(x) = x^4 8x^3 7x^2 + 3$ is divided by $x^2 + x$ is ax + 3.

What is the value of a?

- (A) -14
- (B) -11
- (C) -2
- (D) 5
- Which equation describes the locus of points (x, y) which are equidistant from the distinct points (a+b, b-a) and (a-b, b+a)?
 - (A) bx + ay = 0
 - (B) bx + ay = 2ab
 - (C) bx ay = 0
 - (D) bx ay = 2ab

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Solve
$$\left(x + \frac{2}{x}\right)^2 - 6\left(x + \frac{2}{x}\right) + 9 = 0$$
.

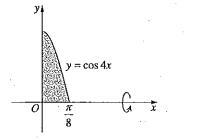
(b) The probability that it rains on any particular day during the 30 days of November is 0.1.

Write an expression for the probability that it rains on fewer than 3 days in November.

- (c) Sketch the graph $y = 6 \tan^{-1} x$, clearly indicating the range.
- (d) Evaluate $\int_{2}^{5} \frac{x}{\sqrt{x-1}} dx$ using the substitution $x = u^{2} + 1$.
- (e) Solve $\frac{x^2 + 5}{x} > 6$.
- (f) Differentiate $\frac{e^x \ln x}{x}$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle is moving in simple harmonic motion about the origin, with displacement x metres. The displacement is given by $x = 2 \sin 3t$, where t is time in seconds. The motion starts when t = 0.
 - (i) What is the total distance travelled by the particle when it first returns to the origin?
 - (ii) What is the acceleration of the particle when it is first at rest?
- (b) The region bounded by $y = \cos 4x$ and the x-axis, between x = 0 and $x = \frac{\pi}{8}$, is rotated about the x-axis to form a solid.



NOT TO SCALE

Find the volume of the solid.

(c) A particle moves along a straight line with displacement x m and velocity y m s⁻¹. The acceleration of the particle is given by

$$\ddot{x}=2-e^{-\frac{x}{2}}.$$

Given that y=4 when x=0, express y^2 in terms of x.

Question 12 continues on page 8

Question 12 (continued)

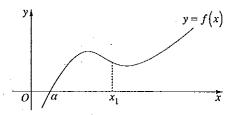
(d) Use the binomial theorem to show that

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}.$$

2

(e) The diagram shows the graph of a function f(x).

The equation f(x) = 0 has a root at $x = \alpha$. The value x_1 , as shown in the diagram, is chosen as a first approximation of α .



A second approximation, x_2 , of α is obtained by applying Newton's method once, using x_1 as the first approximation.

Using a diagram, or otherwise, explain why x_1 is a closer approximation of α than x_2 .

(f) Milk taken out of a refrigerator has a temperature of 2°C, It is placed in a room of constant temperature 23°C. After t minutes the temperature, T°C, of the milk is given by

$$T = A - Be^{-0.03t}$$

where A and B are positive constants.

How long does it take for the milk to reach a temperature of 10°C?

End of Question 12

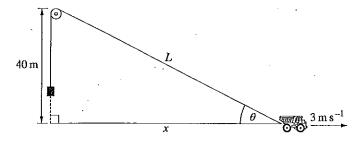
Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Use mathematical induction to prove that $2^n + (-1)^{n+1}$ is divisible by 3 for all integers $n \ge 1$.

(b) One end of a rope is attached to a truck and the other end to a weight. The rope passes over a small wheel located at a vertical distance of 40 m above the point where the rope is attached to the truck.

The distance from the truck to the small wheel is L m, and the horizontal distance between them is x m. The rope makes an angle θ with the horizontal at the point where it is attached to the truck.

The truck moves to the right at a constant speed of 3 m s⁻¹, as shown in the diagram.



(i) Using Pythagoras' Theorem, or otherwise, show that $\frac{dL}{dx} = \cos\theta$.

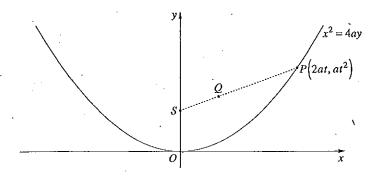
2

(ii) Show that $\frac{dL}{dt} = 3\cos\theta$,

Question 13 continues on page 10

Question 13 (continued)

(c) The point $P(2at, at^2)$ lies on the parabola $x^2 = 4ay$ with focus S. The point Q divides the interval PS internally in the ratio $t^2:1$.

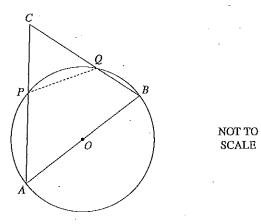


- (i) Show that the coordinates of Q are $x = \frac{2at}{1+t^2}$ and $y = \frac{2at^2}{1+t^2}$.
- (ii) Express the slope of OQ in terms of t.
- (iii) Using the result from part (ii), or otherwise, show that Q lies on a fixed circle of radius a.

Question 13 continues on page 11

Question 13 (continued)

(d) In the diagram, AB is a diameter of a circle with centre O. The point C is chosen such that $\triangle ABC$ is acute-angled. The circle intersects AC and BC at P and Q respectively.



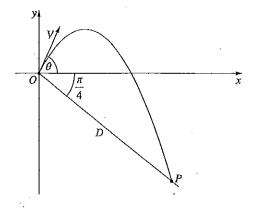
Copy or trace the diagram into your writing booklet.

- (i) Why is $\angle BAC = \angle CQP$?
- (ii) Show that the line OP is a tangent to the circle through P, Q and C.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The take-off point O on a ski jump is located at the top of a downslope. The angle between the downslope and the horizontal is $\frac{\pi}{4}$. A skier takes off from O with velocity V m s⁻¹ at an angle θ to the horizontal, where $0 \le \theta < \frac{\pi}{2}$. The skier lands on the downslope at some point P, a distance D metres from O.



The flight path of the skier is given by

$$x = Vt\cos\theta$$
, $y = -\frac{1}{2}gt^2 + Vt\sin\theta$, (Do NOT prove this.)

where t is the time in seconds after take-off.

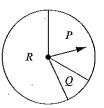
(i) Show that the cartesian equation of the flight path of the skier is given by

$$y = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta.$$

- (ii) Show that $D = 2\sqrt{2} \frac{V^2}{g} \cos \theta (\cos \theta + \sin \theta)$.
- (iii) Show that $\frac{dD}{d\theta} = 2\sqrt{2} \frac{V^2}{g} (\cos 2\theta \sin 2\theta)$.
- (iv) Show that D has a maximum value and find the value of θ for which this occurs.

Question 14 continues on page 13

(b) Two players A and B play a game that consists of taking turns until a winner is determined. Each turn consists of spinning the arrow on a spinner once. The spinner has three sectors P, Q and R. The probabilities that the arrow stops in sectors P, Q and R are p, q and r respectively.



The rules of the game are as follows:

- If the arrow stops in sector P, then the player having the turn wins.
- If the arrow stops in sector Q, then the player having the turn loses and the other player wins.
- If the arrow stops in sector R, then the other player takes a turn.

Player A takes the first turn.

(i) Show that the probability of player A winning on the first or the second turn of the game is (1-r)(p+r).

2

3

(ii) Show that the probability that player A eventually wins the game is

$$\frac{p+r}{1+r}$$
.

End of paper

2014 Higher School Certificate Solutions Mathematics Extension 1

SECTION I

Summary				
1 D	3 C	5 B	7 A	9 C
2 A	4 D	6 B	8 D	10 C

SECTION I

- 1 (D) Angle at the centre is twice the angle at circumference standing on the same arc $\therefore \angle AOB = 80^{\circ}$.
- 2 (A) $\cos x \sin x = R\cos(x + \alpha)$ = $R\cos x \cos \alpha - R\sin x \sin \alpha$ Equating co-efficients $R\cos \alpha = 1...(1)$

$$R\sin\alpha=1...(2)$$

$$(2) \div (1)$$

$$\tan \alpha = 1 \Rightarrow \alpha = \frac{\pi}{4}$$

$$(1)^2 + (2)^2$$

$$R^2 \cos^2 \alpha + R^2 \sin^2 \alpha = 1^2 + 1^2$$

$$R^2(\cos^2\alpha + \sin^2\alpha) = 2$$

$$R = \sqrt{2}$$

$$\therefore \cos x - \sin x = \sqrt{2}\cos(x + \frac{\pi}{4}).$$

3 (C) For
$$\left(2x - \frac{5}{x^3}\right)^{12}$$
.
 $T_{r+1} = {}^{12}C_r (2x)^{12-r} \left(-5x^{-3}\right)^r$
Any term is of the form
$$T_{r+1} = {}^{12}C_r (2x)^{12-r} (-5x^{-3})^r$$

$$= Ax^{12-4r}$$

For the constant term:

$$12 - 4r = 0$$

$$r=3$$

The constant term is

$$T_{3+1} = {12 \choose 3} (2x)^{12-3} (-5x^{-3})^3$$

$$T_4 = {12 \choose 3} 2^9 x^9 (-5)^3 x^{-9}$$
$$= -{12 \choose 3} 2^9 5^3.$$

4 (D)
$$2x+2y=5 \Rightarrow m_1 = -1$$

 $y=3x+1 \Rightarrow m_2 = 3$
 $\tan \theta = \left| \frac{3--1}{1+3\times -1} \right|$
= 2 (for the acute angle).

5 (B)
$$\alpha\beta\gamma = -42$$
 (1) $\alpha\beta + \alpha\gamma + \beta\gamma = -41$ (2)

Answers (A) and (C) do not satisfy (1). Answer (D) does not satisfy (2).

For answer (B):

$$\alpha\beta\gamma = 1 \times -6 \times 7 = -42$$

 $\alpha\beta + \alpha\gamma + \beta\gamma = -6 + 7 - 42 = -41$.

6 (B) Using the standard integrals with a = 2:

$$\frac{d}{dx} \left(3\sin^{-1} \frac{x}{2} \right) = 3 \times \frac{1}{\sqrt{2^2 - x^2}}$$

$$= \frac{3}{\sqrt{4 - x^2}},$$

7 (A) Amplitude:
$$a = 5$$
For a period of 6: $6 = \frac{2\pi}{n}$

$$n = \frac{\pi}{3}$$

$$\therefore x = 5\sin\left(\frac{\pi}{3}t\right)$$

$$v = \frac{dx}{dt} = -\frac{5\pi}{3}\cos\left(\frac{\pi}{3}t\right).$$

8 (D) 6 people can be chosen from 15 in

(15)
6 ways. Also, 6 people can be arranged in a ring in 5! ways.

Total number is:

$$\binom{15}{6} 5! = \frac{15!}{(15-6)!6!} 5!$$

$$= \frac{15!}{9!6}.$$

9 (C)
$$P(x) = x^4 - 8x^3 - 7x^2 + 3$$

 $= x(x+1)Q(x) + ax + 3$
 $P(-1) = 1 + 8 - 7 + 3$
 $= (-1)(-1+1)Q(-1) + a(-1) + 3$
 $5 = -a + 3$
 $a = -2$

10 (C) The locus is the perpendicular bisector of the two points.

The midpoint is:

$$M = \left(\frac{a+b+(a-b)}{2}, \frac{b-a+(b+a)}{2}\right)$$
$$= (a,b)$$

The gradient is:

$$m = \frac{b+a-(b-a)}{a-b-(a+b)}$$
$$= \frac{2a}{2b}$$

$$=-\frac{a}{h}$$

The perpendicular gradient is $\frac{b}{a}$

The equation is:

$$y-b = \frac{b}{a}(x-a)$$

$$ay-ab = bx-ab$$

$$bx-ay = 0$$

SECTION II

Question 11

(a)
$$\left(x + \frac{2}{x}\right)^2 - 6\left(x + \frac{2}{x}\right) + 9 = 0$$
Let $u = x + \frac{2}{x}$

$$u^2 - 6u + 9 = 0$$

$$(u - 3)^2 = 0$$

$$u = 3$$

$$x + \frac{2}{x} = 3$$

$$x^2 - 3x + 2 = 0$$

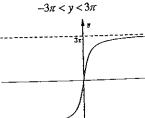
$$(x - 2)(x - 1) = 0$$

$$x = 2, \quad x = 1$$

$$\therefore x = 1, 2$$

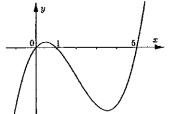
(b) P(rain)=0.1 P(no rain)=0.9 P(<3 days rain)=P(0 days) + P(1 day) + P(2 days) $=0.9^{24} + \binom{20}{1} (0.1^{1} \times 0.9^{24} + \binom{30}{2}) (0.1^{1} \times 0.9^{24} + \binom{$

(c) $y = 6 \tan^{-1} x$ Range: $-\frac{\pi}{2} < \frac{y}{6} < \frac{\pi}{2}$



(d)
$$x = u^{2} + 1 \qquad x = 2 \Rightarrow u = 1$$
$$dx = 2u du \qquad x = 5 \Rightarrow u = 2$$
$$\int_{2}^{5} \frac{x}{\sqrt{x - 1}} dx = \int_{1}^{2} \frac{u^{2} + 1}{u} \times 2u du$$
$$= 2\left[\frac{u^{3}}{3} + u\right]_{1}^{2}$$
$$= 2\left(\frac{8}{3} + 2 - \frac{1}{3} - 1\right)$$
$$= 2 \times \frac{10}{3}$$
$$= 6\frac{2}{3}$$

(e)
$$\frac{x^2 + 5}{x} > 6$$
$$\frac{x^2 (x^2 + 5)}{x} > 6 \times x^2$$
$$x(x^2 + 5) > 6x^2$$
$$x(x^2 + 5) - 6x^2 > 0$$
$$x(x^2 - 6x + 5) > 0$$
$$x(x - 1)(x - 5) > 0$$
Consider the graph of $y = x(x - 1)(x - 5)$



Require x values that give positive y values. These occur when 0 < x < 1 or x > 5.

(f)
$$\frac{d}{dx} \left(\frac{e^x \ln x}{x} \right) = \frac{\left(e^x \ln x + \frac{1}{x} e^x \right) x - e^x \ln x \times 1}{x^2}$$
$$= \frac{x e^x \ln x + e^x - e^x \ln x}{x^2}$$
$$= \frac{e^x (x \ln x - \ln x + 1)}{x^2}$$

Question 12

- The displacement function $x = 2\sin 3t$ has an amplitude of 2 and when t=0, x=0. The particle travels 2 metres out then 2 metres back. So the total distance travelled is 4 metres.
 - $x = 2\sin 3t$ $y = 6\cos 3t$ $a = -18\sin 3t$ When first at rest: $0 = 6\cos 3t$ $\cos 3t = 0$ $3t = \frac{\pi}{2}$ $t = \frac{\pi}{6}$ (first at rest) $a = -18\sin 3\left(\frac{\pi}{\epsilon}\right)$ $=-18 \text{ms}^{-2}$.
- Consider: $\cos 2\theta = 2\cos^2 \theta 1$ **(b)** $\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$ Hence $\cos^2 4x = \frac{1}{2}(1 + \cos 8x)$ $V = \pi \int_{-8}^{\frac{\pi}{8}} \cos^2 4x \, dx$ $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{8}} (1 + \cos 8x) dx$ $=\frac{\pi}{2}\left[x+\frac{1}{8}\sin 8x\right]^{\frac{\pi}{8}}$

 $=\frac{\pi}{2}\left[\left(\frac{\pi}{8}+\frac{1}{8}\sin\pi\right)-(0)\right]$

 $=\frac{\pi^2}{16}$ units³.

Let
$$x = -1$$
:
$$0 = {n \choose 0} + {n \choose 1} - 1 + {n \choose 2} \cdot 1$$

$$0 = {n \choose 0} - {n \choose 1} + {n \choose 2} - 1 + \dots$$
As required.

(e) Method 1:

When the tangent at it intersects the x-axis which is further away than x_1 .

OR

Method 2:

From the diagram, if $f'(x_1) < 0$ and $f'(x_1) < 0$ and $f'(x_1) < 0$ and $f'(x_1) < 0$ and $f'(x_1) < 0$.

Hence $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} < 0$.

(c)
$$\ddot{x} = 2 - e^{\frac{x}{2}}$$

$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = 2 - e^{\frac{x}{2}}$$

$$\frac{1}{2} v^2 = 2x + 2e^{-\frac{x}{2}}$$

$$v^2 = 4x + 4e^{-\frac{x}{2}} + C$$
When $x = 0$, $v = 4$

$$4^2 = 4(0) + 4e^{-\frac{0}{2}} + C$$

$$C = 12$$

$$v^2 = 4x + 4e^{-\frac{x}{2}} + 12$$
.

From the Binomial Theorem: (d) $(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$ $0 = {n \choose 0} + {n \choose 1} - 1 + {n \choose 2} \cdot (-1)^2 + \dots + {n \choose n} (-1)^n$ $0 = {n \choose 0} - {n \choose 1} + {n \choose 2} - + \dots + {(-1)}^{a} {n \choose n}$

Method 1:
$$y = f(x)$$

$$0 \quad a \quad x_1 \quad x_2 \quad x$$

When the tangent at $x = x_1$ is drawn, it intersects the x-axis at the point x_2 which is further away from $x = \alpha$

From the diagram, it can be seen that $f'(x_i) < 0 \text{ and } f(x_i) > 0$

$$\therefore \frac{f(x_1)}{f'(x_1)} < 0 \text{ and } \therefore -\frac{f(x_1)}{f'(x_1)} > 0$$

Hence $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} > x_1$ since x_2

is further away from $x = \alpha$ than x_1 .

$$T = A - Be^{-0.03t}$$
As $t \to \infty$, $T \to A$ ∴ $A = 23^{\circ}C$ which is the constant temperature.
∴ $T = 23 - Be^{-0.03t}$

When $t = 0$, $T = 2$
∴ $2 = 23 - Be^{-0.03(0)}$ $\Rightarrow B = 21$
∴ $T = 23 - 21e^{-0.03t}$

When $T = 10$:
$$10 = 23 - 21e^{-0.03t}$$

$$e^{-0.03t} = \frac{13}{21}$$

$$-0.03t = \ln\left(\frac{13}{21}\right)$$

$$t = \frac{\ln\left(\frac{13}{21}\right)}{-0.03}$$

$$= 15.98576934...$$
≈ 16 minutes.

Question 13

(i)

Let P(n) be the proposition that (a) $2^n + (-1)^{n+1}$ is divisible by 3 for all integers $n \ge 1$.

$$P(1): 2^{1} + (-1)^{1+1} = 3.P$$
 $(P \in \mathbb{Z})$
 $LHS = 2^{1} + (-1)^{1+1}$
 $= 2+1$
 $= 3.P$
 $= RHS$

This is divisible by 3 : P(1) is true.

Assume P(k) is true for integer $k \ge 1$ i.e. $2^k + (-1)^{k+1} = 3Q$ $(Q \in \mathbb{Z})$ or $2^k = 3Q - (-1)^{k+1}$

20

202

$$P(k+1): 2^{k+1} + (-1)^{k+2} = 3R \quad (R \in \mathbb{Z})$$

$$LHS = 2^{k+1} + (-1)^{k+2}$$

$$= 2 \cdot 2^k + (-1)^{k+2}$$

$$= 2 \left(3Q - (-1)^{k+1}\right) + (-1)^{k+2}$$

$$= 6Q - 2(-1)^{k+1} + (-1)(-1)^{k+1}$$

$$= 6Q - 3(-1)^{k+1}$$

$$= 3\left(2Q - (-1)^{k+1}\right)$$

$$= 3R$$

- =RHS $\therefore P(k+1)$ is true assuming P(k)is true.
- $\therefore P(n)$ is true by Mathematical Induction.

Using Pythagoras: $x^2 + 40^2 = L^2$

$$L = \sqrt{x^2 + 40^2}$$

$$\frac{dL}{dx} = \frac{1}{2} (x^2 + 40^2)^{\frac{-1}{2}} \times 2x$$

$$= \frac{x}{\sqrt{x^2 + 40^2}}$$

$$= \frac{x}{L}$$

 $\cos \theta = \frac{x}{L}$ $\Rightarrow \frac{dL}{dx} = \cos \theta$ as required.

(ii) Note that
$$\frac{dx}{dt} = 3$$

$$\frac{dL}{dt} = \frac{dL}{dx} \times \frac{dx}{dt}$$

$$= \cos \theta \times 3$$

$$= 3\cos \theta.$$

- (c) (i) $Q(x,y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$ $= \left(\frac{t^2.0 + 1.2at}{t^2 + 1}, \frac{t^2.a + 1.at^2}{t^2 + 1}\right)$ $=\left(\frac{2at}{t^2+1},\frac{2at^2}{t^2+1}\right)$
 - (ii) $m_{QQ} = \frac{y_2 y_1}{x_2 x_1}$ $=\frac{\frac{2at^2}{t^2+1}-0}{\frac{2at}{t^2+1}-0}$ $=\frac{2at^2}{t^2+1}\times\frac{t^2+1}{2at}$
 - (iii) If Q lies on a circle then it should be a fixed distance from a fixed point. The fixed point in its definition is S.

$$QS^{2} = \left(\frac{2at}{t^{2}+1} - 0\right)^{2} + \left(\frac{2at^{2}}{t^{2}+1} - \frac{a(t^{2}+1)}{t^{2}+1}\right)^{2}$$

$$= \frac{4a^{2}t^{2}}{(t^{2}+1)^{2}} + \frac{(at^{2}-a)^{2}}{(t^{2}+1)^{2}}$$

$$= \frac{4a^{2}t^{2} + a^{2}t^{4} - 2a^{2}t^{2} + a^{2}}{(t^{2}+1)^{2}}$$

$$= \frac{a^{2}(t^{4} + 2t^{2} + 1)}{(t^{2}+1)^{2}}$$

$$= \frac{a^{2}(t^{2} + 1)^{2}}{(t^{2}+1)^{2}}$$

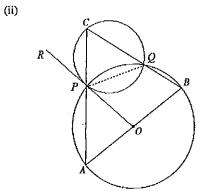
$$= a^{2}$$

$$QS = a$$

Thus Q lies on a fixed circle of radius a.

(d) (i)
$$\angle CQP = \angle BAP$$

The exterior angle of the cyclic quadrilateral $PQBA$ is equal to the opposite interior angle.
 $\therefore \angle COP = \angle BAC$,



Produce OP to R. $\angle CQP = \angle BAC$ from (i) OA=OP (equal radii, \(\triangle APO\) isosceles) $\angle APO = \angle BAC$ (isosceles $\triangle APO$) $\angle RPC = \angle APO$ (vert. opp. angles) $\therefore \angle RPC = \angle CQP$

These 2 angles occupy the positions for the Alternate Segment Theorem. : OP is tangent to circle.

Question 14

a.

 $t = \frac{x}{V\cos\theta}$ (1) $y = -\frac{1}{2}gt^2 + Vt\sin\theta$... (2) $y = -\frac{1}{2}g\left(\frac{x}{V\cos\theta}\right)^2 + V\left(\frac{x}{V\cos\theta}\right)\sin\theta$ $= -\frac{gx^2}{2V^2\cos^2\theta} + x\frac{\sin\theta}{\cos\theta}$ $= x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$ As required.

(ii) Method 1:

P lies on the line y = -x.

Substitute this into the result from (i).

$$x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta = -x$$

$$\frac{gx^2}{2V^2}\sec^2\theta - x - x\tan\theta = 0$$

$$x\left(\frac{gx}{2V^2\cos^2\theta}-1-1\tan\theta\right)=0$$

x=0 is the result for the origin O. The other result is needed.

$$0 = \frac{gx}{2V^2 \cos^2 \theta} - 1 - 1 \tan \theta$$

$$\frac{gx}{2V^2 \cos^2 \theta} = \tan \theta + 1$$

$$= \frac{\sin \theta}{\cos \theta} + 1$$

$$= \frac{\sin \theta + \cos \theta}{\cos \theta}$$

$$x = \left(\frac{\sin \theta + \cos \theta}{\cos \theta}\right) \left(\frac{2V^2 \cos^2 \theta}{g}\right)$$

$$= \frac{2V^2}{g} \left(\cos \theta \sin \theta + \cos^2 \theta\right)$$

$$= \frac{2V^2}{g} \cos \theta \left(\sin \theta + \cos \theta\right)$$

Using Pythagoras theorem:

$$D^2 = x^2 + x^2$$

$$=2x^2$$

$$D = \sqrt{2}x$$

$$D = \sqrt{2x}$$

$$D = 2\sqrt{2} \frac{V^2}{g} \cos\theta (\sin\theta + \cos\theta)$$

As required.

OR

Method 2:

$$\frac{y}{x} = \frac{-\frac{1}{2}gt^2 + Vt\sin\theta}{Vt\cos\theta}$$

$$\tan\left(-\frac{\pi}{4}\right) = \frac{-gt^2 + 2Vt\sin\theta}{2Vt\cos\theta}$$

$$-1 = \frac{-gt^2 + 2Vt\sin\theta}{2Vt\cos\theta}$$

$$2Vt\cos\theta = gt^2 - 2Vt\sin\theta$$

$$t^2 = \frac{2Vt}{g}(\sin\theta + \cos\theta)$$

$$t = \frac{2V}{g}(\sin\theta + \cos\theta)$$
Using Puthergree theorem:

Using Pythagoras theorem:

$$D^2 = x^2 + x^2$$
$$= 2x^2$$

$$D = \sqrt{2}x$$

$$=\sqrt{2}Vt\cos\theta$$

$$D = 2\sqrt{2} \frac{V^2}{g} \cos \theta \left(\sin \theta + \cos \theta \right)$$

As required.

(iii)
$$D = 2\sqrt{2} \frac{V^2}{g} \cos \theta \left(\sin \theta + \cos \theta \right)$$
$$= 2\sqrt{2} \frac{V^2}{g} \left[\cos \theta \left(\sin \theta + \cos \theta \right) \right]$$
$$\frac{dD}{d\theta} = 2\sqrt{2} \frac{V^2}{g} \left[-\sin \theta \left(\sin \theta + \cos \theta \right) + \cos \theta \right)$$
$$= 2\sqrt{2} \frac{V^2}{g} \left[-\sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta \right]$$
$$= 2\sqrt{2} \frac{V^2}{g} \left[\cos 2\theta - \sin 2\theta \right].$$

(iv) For a possible maximum
$$\frac{dD}{d\theta} = 0$$

From part (iii), that means:
 $2\sqrt{2}\frac{V^2}{g}(\cos 2\theta - \sin 2\theta) = 0$
 $\cos 2\theta - \sin 2\theta = 0$
 $\cos 2\theta = \sin 2\theta$
 $\tan 2\theta = 1$
 $\theta = \frac{\pi}{8}$

$$\frac{d^2D}{d\theta^2} = 2\sqrt{2} \frac{V^2}{g} \left(-2\sin 2\theta - 2\cos 2\theta \right)$$

$$< 0 \quad \text{when } \theta = \frac{\pi}{8}$$

$$\therefore D \text{ is a maximum when } \theta = \frac{\pi}{8}.$$

(i)
$$P(A \text{ wins 1st turn}) = P(\text{lands on P})$$

$$= p$$

$$P(A \text{ wins 2nd turn}) = P(A \rightarrow R, B \rightarrow Q)$$

$$= rq$$

$$p+q+r=1 \implies q=1-p-r$$

$$P(A \text{ wins 1st/2nd turn}) = p+rq$$

$$= p+r(1-p-r)$$

$$= p+r-pr-r^2$$

$$= (p+r)-r(p+r)$$

$$= (p+r)(1-r)$$

As required,

(ii)
$$P(w) = P(P) + P(R,Q) + P(R,R,P) + P(R,R,R,Q) + ...$$

 $= p + qr + r^2 p + r^3 q + ...$
 $= p(1+r^2 + ...) + q(r+r^3 + ...)$
 $= \frac{p}{1-r^2} + \frac{qr}{1-r^2}$ use S_{∞} since $0 < r^2 < 1$
 $= \frac{p+qr}{1-r^2}$
 $= \frac{(p+r)(1-r)}{1-r^2}$
 $= \frac{p+r}{1+r}$