Exercise 3.7

1. Use the binomial theorem to expand each of the following.

(a)
$$(p+q)^4$$

(b)
$$(m-n)^7$$

(c)
$$(2 + k^2)^6$$

(d)
$$(2a-b)^5$$

(e)
$$(x + \frac{1}{r})^3$$

(f)
$$(y - \frac{1}{2v})^8$$

2. In each of the following expansions, find the term as stated.

(a)
$$(1+x)^{10}$$
, 5th term

(b)
$$(2-3x)^8$$
, term in x^2

(c)
$$(2a + b)^{12}$$
, 10^{th} term

(d)
$$(p-3q^2)^7$$
, term in p^4q^6

(e)
$$(x-\frac{1}{x})^6$$
, constant term

(f)
$$(x^2 + \frac{1}{x})^9$$
, term in $\frac{1}{x^3}$.

3. Expand the expression

$$(2x + \frac{1}{x^2})^5 + (2x - \frac{1}{x^2})^5$$
,

simplifying the terms.

- 4. The coefficient of x^3 is four times the coefficient of x^2 in the expansion of $(1 + x)^n$. Find the value of n.
- In the binomial expansion of $(1 + \frac{1}{3}x)^n$, the coefficients of the fourth and fifth terms are equal. Find the value of n.
- The coefficient of x^5 in the binomial expansion of $(1 + 5x)^8$ is the same as the coefficient of x^4 in the expansion of $(a + 5x)^7$. Find the value of a.
- If the first three terms in the expansion of $(1 + ax)^n$ in ascending powers of x are $1 4x + 7x^2$, find n and a.
- 8. Find the first four terms of each of the following expansions, in ascending powers of x.

(a)
$$(1+x)^7$$

(b)
$$(1 + x - x^2)^7$$

- 9. Expand $(1 + 2x + 3x^2)^8$ in ascending powers of x up to and including the term in x^3 .
- 10. Find the first three terms, in ascending powers of x, of the expansion $(1-3x)(1+2x)^6$.
- 11. Find the coefficient of the terms in x as indicated, in the following expansions.

(a)
$$(1 + x^2)(2 - 3x)^7$$
, term in x^3

(b)
$$(1-3x-2x^2)(1+x^2)^{20}$$
, term in x^{20}

(c)
$$x(x - \frac{2}{x^2})^{12}$$
, term in x^4

(d)
$$(x + \frac{1}{x})^2 (1 - x)^5$$
, term in x^2

Exercise 3.7

- **1.** (a) $p^4 + 4p^3q + 6p^2q^2 + 4pq^3 + q^4$
 - (b) $m^7 7m^6n + 21m^5n^2 35m^4n^3 + 35m^3n^4 21m^2n^5 + 7mn^6 n^7$
 - (c) $64 + 192k^2 + 240k^4 + 160k^6 + 60k^8 + 12k^{10} + k^{12}$
 - (d) $32a^5 80a^4b + 80a^3b^2 40a^2b^3 + 10ab^4 b^5$
 - (e) $x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}$
 - (f) $y^8 4y^6 + 7y^4 7y^2 + \frac{35}{8} \frac{7}{4y^2} + \frac{7}{16y^4} \frac{1}{16y^6} + \frac{1}{256x^8}$

- **2.** (a) 210*x*⁴
- (b) 16 128x²
- (c) 1 760 a3b9
- (d) −945*p*4*a*6
- (e) --20
- (f) <u>36</u>
- **3.** $64x^5 + \frac{160}{x} + \frac{20}{x^7}$
- **4.** 14
- **5.** 15
- **6.** 2
- 7. n = 8, $a = -\frac{1}{2}$
- 3. (a) $1 + 7x + 21x^2 + 35x^3$
- (b) $1 + 7x + 14x^2 7x^3$
- **9.** $1 + 16x + 136x^2 + 784x^3$
- **10.** $1 + 9x + 24x^2$
- **11.** (a) -16 464
- (b) -151 164
- (c) -1 760
- (d) 26