NAME	

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 - MATHS EXT.2

REVIEW TOPIC (PAPER 1): HYPERBOLA

Received on	Check corrections on pages:
Completed on	
Checked by	

Tutor's Initials

Dated on

CSSA 2000 Q4

- Hyperbola \mathcal{H} has equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and eccentricity e, while ellipse \mathcal{E} has equation $\frac{x^2}{a^2 + b^2} + \frac{y^2}{b^2} = 1$.

 (i) Show that \mathcal{E} has eccentricity $\frac{1}{e}$. 15

(ii) Show that $\, {\mathfrak L} \,$ passes through one focus of $\, {\mathcal H} \,$, and $\, {\mathcal H} \,$ passes through one focus of $\, {\mathcal E} \,$.

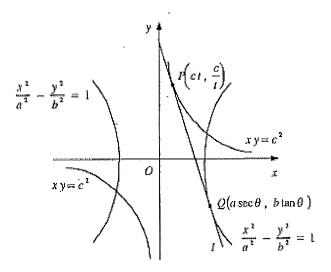
(iii) Sketch $\mathcal H$ and $\mathcal E$ on the same diagram, showing the foci S, S^i of $\mathcal H$ and T, T^i of $\mathcal E$, and the directrices of $\mathcal H$ and $\mathcal E$. Give the coordinates of the foci and the equations of the directrices in terms of a and e.

(iv) If $\mathcal H$ and $\mathcal E$ intersect at P in the first quadrant, show that the acute angle α between the tangents to the curves at P satisfies $\tan \alpha = \sqrt{2} \left(c + \frac{1}{\varepsilon} \right)$.

(v) What is the smallest possible acute angle between the tangents to the curves $\mathcal H$ and $\mathcal E$ at their point of intersection P?

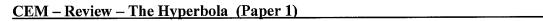
(vi) Find the acute angle between the tangents to the hyperbola $\frac{x^2}{16} - \frac{y^3}{9} = 1$ and the eltipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at their points of intersection. Give your answer to the nearest degree.

CSSA 2001 Q4



The line l is a common tangent to the hyperbolas $xy=c^2$, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ with points of contact P and Q respectively.

(i) Considering l as a tangent to $xy = c^2$ at $P\left(ct, \frac{c}{t}\right)$, show l has equation $x + t^2y = 2ct$.



(ii) Considering
$$l$$
 as a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $Q(a\sec\theta, b\tan\theta)$, show l has equation $\frac{x\sec\theta}{a} - \frac{y\tan\theta}{b} = 1$.

(iii) Deduce that
$$\frac{\sec \theta}{a} = \frac{-\tan \theta}{bt^2} = \frac{1}{2ct}$$
.

2

(iv) Write the coordinates of Q in terms of t, a, b and c, and show that $b^2t^4 + 4c^2t^2 - a^2 = 0$. 3 Deduce that there are exactly two such common tangents to the hyperbolas.

(v) Copy the diagram and use the symmetry in the graphs to draw in the second common tangent with points of contact R on $xy=c^2$ and S on $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. Write the coordinates of R and S in terms of t, a, b and c.

(vi) Show that if PQRS is a rhombus, then $b^3 = a^2$ and deduce that $t^3 < 1$.

2

(vii) Show that if PQRS is a square, then $t^4 + 2t^2 - 1 = 0$ and deduce that $2c^2 = a^2$. What is the relationship between the two hyperbolas if PQRS is a square?

3

NEAP 2000 Q5

- (c) Consider the hyperbola $xy = c^2$ and the distinct points $P\left(ct_1, \frac{c}{t_1}\right)$ and $Q\left(ct_2, \frac{c}{t_2}\right)$ on it.
 - (i) Show that the equation of the tangent at $\left(ct,\frac{c}{t}\right)$, where $t\neq 0$, is $x+t^2y=2ct$.

(ii) Show that the tangents at P and Q intersect at $M\left(\frac{2ct_1t_2}{t_1+t_2},\frac{2c}{t_1+t_2}\right)$.

(iii) Show that if $t_1t_2=k$, where k is a non-zero constant, then the locus of M is a line passing through the origin.

SGHS 2002 Q4

- 2. Find the equation of the chord of contact of the tangents to the hyperbola $x^2 16y^2 = 16$ from the point with coordinates (2, -4)
- [2]

[3]

3. Find the equation of the hyperbola with foci at $(\pm 5,0)$ and eccentricity $e = \frac{5}{4}$

SOLUTIONS

CSSA 2000 Q4

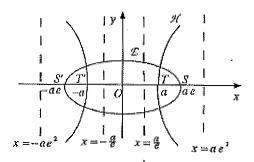
(i) For the hyperbola \mathcal{H} , $b^2 = a^2 \left(e^2 - 1 \right),$ $e^2 = \frac{b^2}{a^2} + 1 = \frac{b^2 + a^2}{a^2}$ If the ellipse \mathcal{E} has eccentricity ϵ , $b^2 = \left(a^2 + b^2 \right) \left(1 - \epsilon^2 \right),$ $\epsilon^2 = 1 - \frac{b^2}{a^2 + b^2}$ $\therefore \epsilon^2 = \frac{a^2}{a^2 + b^2} = \frac{1}{e^2}$

Hence the ellipse \mathcal{Z} has eccentricity $\frac{1}{e}$.

- (ii) Since $a^2 + b^2 = a^2 e^2$, the equation of the ellipse can be rewritten as $\frac{x^2}{a^2 e^2} + \frac{y^2}{b^2} = 1$.

 One focus of $\mathcal H$ is S(ae,0), and this point clearly lies on the ellipse $\mathcal E$.

 One focus of the ellipse is $T(ae,\frac{1}{\epsilon},0) = T(a,0)$ and this point is clearly on the hyperbola $\mathcal H$.
- (iii) Hyperbola $\mathcal H$ has foci S(ae,0), S'(-ae,0) and directrices $x=\frac{a}{e}$, $x=-\frac{a}{e}$. Ellipse $\mathcal E$ has foci T(a,0), T'(-a,0) and directrices $x=\frac{ae}{\left(\frac{1}{e}\right)}=ae^2$, $x=-ae^3$.



(vi) Hyperbola $\mathcal{H}: \frac{x^2}{16} - \frac{y^2}{9} = 1$, with eccentricity e given by $9 = 16\left(e^2 - 1\right) \Rightarrow e = \frac{5}{4}$, and ellipse $\mathcal{E}: \frac{x^2}{25} + \frac{y^2}{9} = 1$ are two such conics. Using the symmetry in their graphs, at all of their points of intersection, the acute angle α between the tangents to the curves is given by $\tan \alpha = \sqrt{2}\left(\frac{5}{4} + \frac{4}{5}\right)$. Hence $\alpha = 71^\circ$ (to the nearest degree)

(iv) Where the curves intersect, $\frac{x^2}{a^3} - \frac{y^2}{b^2} = 1 \quad (1)$ $\frac{x^2}{a^2 e^2} + \frac{y^2}{b^2} = 1 \quad (2)$ $(1) + (2) \implies \frac{x^1}{a^2 e^2} (e^2 + 1) = 2$ $e^2 \times (2) - (1) \implies \frac{y^2}{b^2} (e^2 + 1) = e^2 - 1$ $b^2 = a^2 (e^2 - 1) \implies \frac{y^2}{a^2 (e^2 - 1)} (e^2 + 1) = e^2 - 1$ $\therefore \text{ at } P, \quad x = ae \sqrt{\frac{2}{e^2 + 1}}, \quad y = \frac{a(e^2 - 1)}{\sqrt{e^4 + 1}}$

For the hyperbola, at
$$P$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{2x}{a^2} - \frac{2y}{b^1} \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = \frac{b^2}{a^2} \frac{x}{y} = (e^2 - 1) \frac{x}{y} = \sqrt{2} e$$

For the ellipse, at P $\frac{x^2}{a^2e^2} + \frac{y^2}{b^2} \stackrel{?}{=} 1$ $\frac{2x}{a^2e^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = -\frac{b^2}{a^2e^2} \frac{x}{y} = -\frac{(e^2 - 1)x}{e^2} \frac{x}{y} = -\sqrt{2} \frac{1}{e}$

Hence the gradients of the tangents to $\mathcal H$ and $\mathcal E$ at P are $\sqrt{2}\,e$ and $-\sqrt{2}\,\frac{1}{8}$ respectively.

$$\tan \alpha = \left| \frac{\sqrt{2} e - \left(-\sqrt{2} \frac{1}{e} \right)}{1 + \sqrt{2} e \left(-\sqrt{2} \frac{1}{e} \right)} \right| = \sqrt{2} \left| \frac{e + \frac{1}{e}}{1 - 2} \right|$$

$$\therefore \tan \alpha = \sqrt{2} \left(e + \frac{1}{e} \right)$$

(v) For the hyperbola \mathcal{H} , e > 1 $\left(e + \frac{1}{e}\right)^2 = \left(e - \frac{1}{e}\right)^2 + 4 \implies \left(e + \frac{1}{e}\right)^2 > 4$ and $\left(e + \frac{1}{e}\right)^2 \rightarrow 4$ as $e \rightarrow 1^+$. $\therefore \left(e + \frac{1}{e}\right) > 2 \text{ and } \left(e + \frac{1}{e}\right) \rightarrow 2 \text{ as } e \rightarrow 1^+$ Hence $\tan \alpha > 2\sqrt{2} \implies \alpha > \tan^{-1}\left(2\sqrt{2}\right)$, and $\alpha \rightarrow \tan^{-1}\left(2\sqrt{2}\right)$ as $e \rightarrow 1^+$.

CSSA 2001 Q4

Answer

(i)
$$x = ct \Rightarrow \frac{dx}{dt} = c \\ y = \frac{c}{t} \Rightarrow \frac{dy}{dt} = \frac{-c}{t^2}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$$

$$= -\frac{1}{t^2}$$

$$(ii)$$

$$x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta$$

$$y = b \tan \theta \Rightarrow \frac{dy}{d\theta} = b \sec^2 \theta$$

Hence tangent l has gradient $-\frac{1}{l^2}$ and countion $x+t^2y=k$, k constant, where $P\left(ct, \frac{c}{t}\right)$ lies on $t \implies ct + ct = k$. Hence I has equation $x+t^2y=2ct$.

$$x = a \sec \theta \implies \frac{dx}{d\theta} = a \sec \theta \tan \theta$$

$$y = b \tan \theta \implies \frac{dy}{d\theta} = b \sec^2 \theta$$

$$\therefore \frac{dy}{dx} = \frac{dy}{d\theta} + \frac{dx}{d\theta} = \frac{b \sec \theta}{a \tan \theta}$$
Hence tangent l has gradient $\frac{b \sec \theta}{a \tan \theta}$ and equation $x b \sec \theta - y a \tan \theta = k$, k constant, where $Q(a \sec \theta, b \tan \theta)$ lies on l

$$\implies k = ab \sec^2 \theta - ab \tan^2 \theta = ab$$
. Hence l has equation $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$.

(iii) Comparing the two forms of the equation of line I, the coefficients must be in proportion. Hence

$$\frac{\left(\frac{\sec\theta}{a}\right)}{1} = \frac{\left(\frac{-\tan\theta}{b}\right)}{t^2} = \frac{1}{2ct} \qquad \therefore \frac{\sec\theta}{a} = \frac{-\tan\theta}{bt^2} = \frac{1}{2ct}$$

$$\therefore \frac{\sec \theta}{a} = \frac{-\tan \theta}{bt^2} = \frac{1}{2ct}$$

$$\begin{array}{c} Q(a \sec \theta \,,\,\, b \tan \theta \,) \\ \equiv Q\left(\frac{a^2}{2\,c\,t} \,,\, \frac{-\,b^2t}{2\,c}\right) \end{array} \right\} \, \qquad \qquad \begin{array}{c} \sec^2\theta \,-\,\,\tan^2\theta \,\,=\, 1 \\ \left(\frac{a}{2\,c\,t}\right)^2 \,-\, \left(\frac{-\,b\,t}{2\,c}\right)^2 \,=\, 1 \end{array} \right\} \,\, \Rightarrow \,\, \qquad \begin{array}{c} a^2 \,-\,\,b^2t^4 \,=\, 4\,c^2t^4 \,\,=\, 4\,c^2t^4 \,\,=\,$$

This quadratic in t^2 has discriminant $\Delta = 16c^4 + 4a^2b^2 > 0$, and hence has two real roots which are opposite in sign (since their product is negative). But $t^2 > 0$, hence there is exactly one solution for t2, and two solutions for t which are opposites of each other. Each such value of t gives a common tangent 1 to the two hyperbolas.

(v) $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$ $xy = c^{2}$ $x = \frac{b^{2}t}{c} + \frac{-a^{2}}{ct} = \frac{b^{2}}{a^{2}}(-t^{2})$ $x = \frac{b^{2}t}{c} + \frac{-a^{2}}{ct} = \frac{b^{2}}{a^{2}}(-t^{2})$ $x = \frac{b^{2}t}{c} + \frac{-a^{2}t}{c} = \frac{b^{2}t}{a^{2}}$ $x = \frac{b^{2}t}{c} + \frac{-a^{2}t}{c} = \frac{b^{2}t}{a^{2}} + \frac{b^{2}t}{c} = \frac{b^{2}t}{a^{2}}$ $x = \frac{b^{2}t}{c} + \frac{b^{2}t}{c} = \frac{b^{2}t}{a^{2}} + \frac{b^{2}t$

$$R\left(-ct, \frac{-c}{t}\right)$$
, $S\left(\frac{-a^2}{2ct}, \frac{b^2t}{2c}\right)$

O is the common midpoint of diagonals PR and QS. Hence PQRS is a parallelogram.

gradient
$$PR = \frac{2c}{t} + 2ct = \frac{1}{t^2}$$

gradient $QS = \frac{b^2t}{c} + \frac{-a^2}{ct} = \frac{b^2}{a^2}(-t^2)$

.. gradient
$$PR$$
 . gradient $QS = -\frac{b^2}{a^2}$
Hence if $PQRS$ is a rhombus, $PR \perp QS$ and gradient PR . gradient $QS = -1 \implies b^2 = a^2$.

Then
$$t$$
 satisfies $a^2t^4 + 4c^2t^2 - a^2 = 0$
 $t^4 + \frac{4c^4}{a^4}t^2 = 1$
 $\left(t^2 + \frac{2c^2}{a^2}\right)^2 = 1 + \frac{4c^4}{a^4} < \left(1 + \frac{2c^2}{a^2}\right)^2$
Hence $t^2 < 1$

(vii) If PQRS is a square, then PQRS is a rhombus with $R\hat{P}Q \approx 45^{\circ}$. Then

gradient
$$PR = \frac{1}{t^2}$$
gradient $PQ = \frac{-1}{t^2}$

$$\Rightarrow 1 = \left| \frac{\left(\frac{2}{t^2}\right)}{1 + \left(\frac{1}{t^2}\right)\left(\frac{-1}{t^2}\right)} \right| = \frac{-2t^4}{t^4 - 1} \quad \text{(since } t^2 < 1 \text{ for } PQRS \text{ a rhombus)}$$

Hence $t^4 + 2t^2 - 1 = 0$. But for PQRS a rhombus, t satisfies $t^4 + \frac{4c^2}{a^2}t^2 - 1 = 0$.

By subtraction,
$$\left(\frac{4c^2}{a^2}-2\right)t^2=0$$
. But $t^2\neq 0$. Hence $2c^2=a^2$.

Hence if PQRS is a square (and hence a rhombus), then $b^2 = a^2$, and the two hyperbolas have equations $x^2 - y^2 = a^2$ and $xy = c^2$, where $2c^2 = a^2$.

This relationship between c^2 and a^2 means that the rectangular hyperbola $x^2 - y^2 = a^2$ rotated anticlockwise through 45° becomes the rectangular hyperbola $xy = c^2$.

NEAP 2000 Q4

(c) (i) The focus is S(ae, 0). The directrix is $x = \frac{a}{e}$.

(ii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-b^2x}{a^2y}$$

So the slope of the normal at $P(x_1, y_1)$ is $\frac{a^2y_1}{b^2x_1}$ \checkmark

The equation of the normal is $y - y_1 = \frac{a^2 y_1}{b^2 x_1} (x - x_1)$

$$b^{2}x_{1}(y-y_{1}) = a^{2}y_{1}(x-x_{1})$$

$$a^{2}xy_{1} = b^{2}x_{1}y = a^{2}x_{1}y_{1} - b^{2}x_{1}y_{1}$$

$$\frac{a^{2}x}{x_{1}} - \frac{b^{2}y}{y_{1}} = a^{2} - b^{2}$$

$$\checkmark \text{ (divide both sides by } x_{1}y_{1})$$

(iii)
$$Q$$
 is the point $\left(\frac{a^2 - b^2}{a^2}x_1, 0\right)$ or $(e^2x_1, 0)$ (from $a^2(1 - e^2) = b^2$).

so,
$$QS = |e^2x_1 - ae|$$

= $e|ex_1 - a|$

Also,
$$PM = \frac{a}{e} - x_1$$

so
$$e^2 PM = e^2 \left(\frac{a}{e} - x_1\right)$$

$$=e(a-ex_1)$$

Hence $QS = e^2 PM$. \checkmark

SGHS 2002 Q4

2 x = - 16-4 = 16
$\frac{76}{16} - y^2 = 1$
7 x 5 = 1
2 x 4 y 7 = 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 + 1.32y = 8
3. Foci at (25,0), 2 = 1/4.
and the state of t
A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
and b= a (e-1)
$= 16 \left(\frac{2T}{16} - 1 \right) $ (3)
61 = 9
12 22