NAME :

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – EXT.2 MATHS

REVIEW TOPIC (SP1) POLYNOMIALS II

(1) (a) The complex number z and its conjugate \overline{z} satisfy the equation $z\overline{z} + 2iz = 12 + 6i$. Find the possible values of z.

$$3-i,3+3i$$

(b) 1+i is a root of the equation $x^2 + (a+2i)x + (5+ib) = 0$, where a and b are real. Find the values of a and b.

(2) (a) 1-2i is one root of the equation $x^2 + (1+i)x + k = 0$. Find the other root and the value of k.

k = 5i, x = -2 + i

- (b) Find the zeros of $P(x) = x^4 4x^2 + 3 = 0$
 - (i) over \mathbf{Q} ;

(ii) over R;

 $\pm 1, \pm \sqrt{3}$

 ± 1

(iii) over C,

(3) (a) Find P(x), given that P(x) is monic, of degree 3, with 5 as a single zero and -2 as a zero of multiplicity 2.

$$P(x) = x^3 - x^2 - 16x - 20$$

(b) P(x) is an even monic polynomial of degree 4 with integer coefficients. If $\sqrt{2}$ is a zero, and the constant term is 6, factorise P(x) fully over **R**.

$$P(x) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$$

If $P(x) = x^3 - 3x^2 - 9x + c$ has a double zero, find c and factorise P(x) over the real numbers.

$$c = 27$$
 $P(x) = (x-3)^2(x+3);$
 $c = -5$ $P(x) = (x+1)^2(x-5)$

$$c = -5$$
 $P(x) = (x+1)^{2}(x-5)$

(5) If $ax^3 + cx + d = 0$ has a double root, show that $4c^3 + 27ad^2 = 0$.

(6) (a) When $P(x) = x^4 + ax^2 + 2x$ is divided by $x^2 + 1$, the remainder is 2x + 3. Find the value of a.

a = -2

(b) When $P(x) = x^4 + ax^2 + bx + 2$ is divided by $x^2 + 1$, the remainder is -x + 1. Find the values of a and b.

(7) (a) Two of the roots of $3x^3 + ax^2 + 23x - 6 = 0$ are reciprocals. Find the value of a and the three roots.

a = -16; roots are $3, \frac{1}{3}, 2$

(8) The equation $px^3 + qx^2 + rx + s = 0$ has roots (a - c), a, (a + c), which are in arithmetic progression. Show that the $a = \frac{-q}{3p}$ and hence show that $2q^3 - 9pqr + 27p^2s = 0$.

(9) The equation $px^3 + qx^2 + rx + s = 0$ has the roots ac, a and $\frac{a}{c}$, which are in geometric progression. Show that $a = \sqrt[3]{\left(-s/p\right)}$ and hence show that $pr^3 - q^3s = 0$.

(10) The equation $x^3 + x^2 - 2x - 3 = 0$ has roots α , β and γ . Find the equations with roots (a) $\frac{\alpha}{2}$, $\frac{\beta}{2}$ and $\frac{\gamma}{2}$;

$$8x^3 + 4x^2 - 4x - 3 = 0$$

(b)
$$\alpha + 2$$
, $\beta + 2$ and $\gamma + 2$.

$$x^3 - 5x^2 + 6x - 3 = 0$$

Qu. (11) (a) The polynomial $\alpha x^{n+1} + \beta x^n + 1$ is divisible by $(x-1)^2$. Show that $\alpha = n$, and $\beta = -(1+n)$.

(b) Prove that $1+x+\frac{x^2}{2!}+....+\frac{x^n}{n!}$ has no multiple roots for any $n \ge 1$.

Qu. (12) (HSC 1994)

(4) (a) Find α and β , given that $z^3 + 3z + 2i = (z - \alpha)^2 (z - \beta)$.

 $\alpha = -i, \beta = 2i$

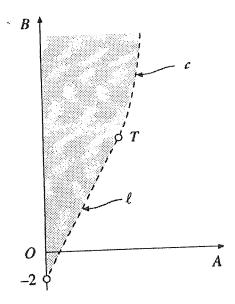
Qu. (13) (HSC 1994)

- (8) (b) Let $x = \alpha$ be a root of the quartic polynomial $P(x) = x^4 + Ax^3 + Bx^2 + Ax + 1$, where A and B are real. Note that α may be complex.
 - (i) Show that $\alpha \neq 0$.

(ii) Show that $x = \alpha$ is also a root of $Q(x) = x^2 + \frac{1}{x^2} + A\left(x + \frac{1}{x}\right) + B$.

(iii) With $u = x + \frac{1}{x}$, show that Q(x) becomes $R(u) = u^2 + Au + (B-2)$.

(iv) For certain values of A and B, P(x) has no real roots and $A \ge 0$.



The region **D** is shaded in the figure. Specify the bounding straight-line segment 1 and curved segment 1. Determine coordinates of T.

Qu. (14) (HSC 1995)

- (5) (b) Let $f(t) = t^3 + ct + d$, where c and d are constants. Suppose that the equation f(t) = 0 has three distinct real roots, t_1 , t_2 , and t_3 .
 - (i) Find $t_1 + t_2 + t_3$.

(ii) Show that $t_1^2 + t_2^2 + t_3^2 = -2c$.

0

(iii) Since the roots are real and distinct, the graph of y = f(t) has two turning points, at t = u and t = v, and $f(u) \cdot f(v) < 0$. Show that $27d^2 + 4c^3 < 0$.

Qu. (15) HSC 1996

(5) (b) Consider the polynomial equation

$$x^4 + ax^3 + bx^2 + cx + d = 0,$$

where a, b, c, and d are integers. Suppose the equation has a root of the form ki, where k is real, and $k \neq 0$.

(i) State why the conjugate -ki is also a root.

(ii) Show that $c = k^2 a$.

(iii) Show that $c^2 + a^2d = abc$.

(iv) If 2 is also a root of the equation and b=0, show that c is even.

- Qu. (16) (HSC 1997) (3) (b) Let $f(x) = 3x^5 10x^3 + 16x$.
 - (i) Show that $f'(x) \ge 1$ for all x.

(ii) For what values of x is f''(x) positive?

x > 1 and -1 < x < 0

(iii) Sketch the graph of y = f(x), indicating any turning points and points of inflection.

Qu. (17) (HSC 1997)

(5) (c) Suppose that b and d are real numbers and $d \neq 0$. Consider the polynomial

$$P(z) = z^4 + bz^2 + d.$$

The polynomial has a double root α .

(i) Prove that P'(z) is an odd function. (i.e. prove P'(-z) = -P'(z))

(ii) Prove that $-\alpha$ is also a double root of P(z).

(iii) Prove that $d = \frac{b^2}{4}$.

(iv) For what values of b does P(z) have a double root equal to $\sqrt{3}i$?

b = 6

(v) For what values of b does P(z) have real roots?

b < 0

Qu. (18) (HSC 2002)

- (b) Let α , β , and γ be the roots of the equation $x^3 5x^2 + 5 = 0$.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 1$, $\beta 1$, and $\gamma 1$.

2

(ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 , and γ^2 .

 $x^3 - 25x^2 + 50x - 25 = 0$

(iii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

Qu. (19) (HSC 1998)

(4) (a) (i) Suppose that k is a double root of the polynomial equation f(x) = 0. 7 Show that f'(k) = 0.

(ii) What feature does the graph of a polynomial have at a root of multiplicity 2?

(iii) The polynomial $P(x) = ax^7 + bx^6 + 1$ is divisible by $(x-1)^2$. Find the coefficients a and b. (iv) Let $E(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$. Prove that E(x) = 0 has no double roots.

- (6) (a) Consider the following statements about a polynomial Q(x). Indicate whether each of these statements is true or false. Give reasons for your answers.
 - (i) If Q(x) is even, then Q'(x) is odd.

(ii) If Q'(x) is even, then Q(x) is odd.

TRUE

Qu. (20) (HSC 1999)

(2) (d) Consider the equation $2z^3 - 3z^2 + 18z + 10 = 0$

2

(i) Given that 1 - 3i is a root of the equation, explain why 1 + 3i is another root.

(ii) Find all roots of the equation.

$$1-3i,1+3i,-\frac{1}{2}$$

Qu. (21) (HSC 1999)

(5) (a) The roots of $x^3 + 5x^2 + 11 = 0$, are α, β and γ .

3

(i) Find the polynomial equation whose roots are α^2 , β^2 and γ^2 .

(ii) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

25

2

Qu. (22) (HSC 2000)

(2) (b) Consider the equation $z^2 + az + (1+i) = 0$. Find the complex number a, given that i is a root of the equation.

a = -1

- (5) (a) Consider the polynomial $p(x) = ax^4 + bx^3 + cx^2 + dx + e$ where a, b, c, d and e are integers. Suppose α is an integer such that $p(\alpha) = 0$.
 - (i) Prove that α divides e.

(ii) Prove that the polynomial $q(x) = 4x^4 - x^3 + 3x^2 + 2x - 3$ does not have an integer root.

Qu. (23) HSC 2001

(3) (b) The numbers α, β and γ satisfy the equations

$$\alpha + \beta + \gamma = 3$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = 1$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 2.$$

(i) Find the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

Explain why α , β and γ are the roots of the cubic equation $x^3 - 3x^2 + 4x - 2 = 0.$

 $\sum \alpha \beta = 4, \ \alpha \beta \gamma = 2$

(ii) Find the values of α , β and γ .

2

Qu. (24) HSC 2001

- 7*(b) Consider the equation $x^3 3x 1 = 0$, which we denote by (*).
 - (i) Let x = p/q where p and q are integers having no common divisors other than +1 and -1. Suppose that x is a root of the equation ax³-3x+b=0, where a and b are integers.
 Explain why p divides b and why q divides a. Deduce that (*) does not have a rational root.

(ii) Suppose that r, s and d are rational numbers and that \sqrt{d} is irrational. 4 Assume that $r + s\sqrt{d}$ is a root of (*).

Show that $3r^2s + s^3d - 3s = 0$ and show that $r - s\sqrt{d}$ must also be a root of (*).

Deduce from this result and part (i), that no root of (*) can be expressed in the form $r + s\sqrt{d}$ with r, s and d rational.

(iii) Show that one root of (*) is $2\cos\frac{\pi}{9}$.

1

(You may assume the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.)

Qu. (25) HSC 2002

(5 (a) The equation $4x^3 - 27x + k = 0$ has a double root. Find the possible values of k.

2

 $k = \pm 27$

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 - EXT.2 MATHS

REVIEW TOPIC (SP1) POLYNOMIALS II

De corrections on page 2,6,11,19,21,24,27

1

(1) (a) The complex number z and its conjugate \overline{z} satisfy the equation $z\overline{z} + 2iz = 12 + 6i$. Find the possible values of z.

$$(x^2+y^2) + 2i(x+iy) = 12+6i$$
 $(x+iy)(x+iy)$
 $x^2+y^2 + 2ix - 2y = 12+6i$
 $2x = 6$
 $x = 3$
 $3^2+y^2-2y = 12$
 $y^2-2y-3=0$
 $(y-3)(y+1)=0$
 $y=3$ $y=1$

3-i, 3+3i

(b) 1+i is a root of the equation $x^2 + (a+2i)x + (5+ib) = 0$, where a and b are real. Find the values of a and b.

(2) (a) 1-2i is one root of the equation $x^2 + (1+i)x + k = 0$. Find the other root and the value of k.

sum of roots: --

$$1-2i + x + iy = -(1+i)$$

= -1-i/
 $1+x=-1$ - $2+y=-1$
 $x=-2$ $y=1$
... root is -2+i

product of voots:

k = 5i, x = -2 + i

(b) Find the zeros of $P(x) = x^4 - 4x^2 + 3 = 0$

(i) over Q;

(ii) over R;

 $\pm 1, \pm \sqrt{3}$

±1

(iii) over C,

(3) (a) Find P(x), given that P(x) is monic, of degree 3, with 5 as a single zero and -2 as a zero of multiplicity 2.

$$P(x) = (x-5)(x+2)^{2}$$

$$= (x-5)(x+2)$$

$$=$$

 $P(x) = x^3 - x^2 - 16x - 20$

(b) P(x) is an even monic polynomial of degree 4 with integer coefficients. If $\sqrt{2}$ is a zero, and the constant term is 6, factorise P(x) fully over \mathbb{R} .

$$= (x + \sqrt{2})x - \sqrt{2}x^{2} + 3).$$

$$= (x + \sqrt{2})x - \sqrt{2}x^{2} + 3).$$

 $\pm 1, \pm \sqrt{3}$

 $P(x) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$

(4) If $P(x) = x^3 - 3x^2 - 9x + c$ has a double zero, find c and factorise P(x) over the real numbers.

$$P'(x) = 3x^{2} - 6x - 9$$

$$P'(x) = 0$$

$$x^{2} - 2x - 3 = 0$$

$$(x - 3)x + 1 = 0$$

$$x = 3 - 3(3^{2}) - 9(3) + 0 = 0$$

$$p(x) = (x-3)^{2}(x+3)$$

$$P(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + (= 0)$$

$$c = 27$$
 $P(x) = (x-3)^2(x+3);$
 $c = -5$ $P(x) = (x+1)^2(x-5)$

(5) If
$$\alpha^{3} + cx + d = 0$$
 has a double root, show that $4c^{3} + 27ad^{2} = 0$.

$$P(\pi) = a\pi^{3} + cx + d$$

$$P(\pi) = 3a\pi^{2} + c = 0$$

$$3a\pi^{2} = -c$$

$$\pi^{2} = -\frac{c}{3a}$$

$$\pi = \sqrt{-\frac{c}{3a}}$$

$$\sqrt{-\frac{c}{3a}} \left[a(-\frac{c}{3a}) + c \right] = 0$$

$$\sqrt{-\frac{c}{3a}} \left[a(-\frac{c}{3a}) + c \right] = -d$$

$$-\frac{c}{3a} = \frac{9d^{2}}{4c^{2}}$$

$$-4c^{3} = 27ad^{2}$$

$$4c^{3} + 27ad^{2} = 0$$

(6) (a) When $P(x) = x^4 + ax^2 + 2x$ is divided by $x^2 + 1$, the remainder is 2x + 3.

Find the value of a.

Find the value of a.

$$x^{2} + (a-1)$$

$$x^{2} + (a-1)$$

$$x^{3} + 4x^{2} + 2x$$

$$(a-1)x^{2} + 2x$$

2x - att.

(b) When $P(x) = x^4 + ax^2 + bx + 2$ is divided by $x^2 + 1$, the remainder is -x + 1. Try substituting x=6 Find the values of a and b.

$$\frac{x^{2}+(a-1)}{x^{2}+bx^{2}+bx+2}$$

$$\frac{x^{4}+x^{4}}{(a-1)x^{2}+bx^{2}+2}$$

$$\frac{(a-1)x^{2}+bx^{2}+2}{(a-1)x^{2}+0+a-1}$$

$$\frac{(a-1)x^{2}+bx^{2}+2}{(a-1)x^{2}+0+a-1}$$

$$bx = -x$$
 $b = -1$
 $2-a+1 = 1$
 $a = 2$

C.E.M - YEAR 12 - EXT.2 LESSON NOTES - REVIEW of POLYNOMIALS II

(7) (a) Two of the roots of $3x^3 + \alpha x^2 + 23x - 6 = 0$ are reciprocals. Find the value of a and the three roots.

$$\alpha \cdot \frac{1}{\alpha} \cdot b = \frac{6}{3}$$

$$b = 2$$

$$a + a + ab + \frac{b}{a} = \frac{27}{3}.$$

$$ab + \frac{b}{a} = \frac{20}{3}$$

$$2\alpha + \frac{2}{\alpha} = \frac{20}{3}$$

$$\frac{1}{3} + 3 + 2 = -\frac{d}{3}$$

$$\alpha = -16$$
, roots $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$

(8) The equation $px^3 + qx^2 + rx + s = 0$ has roots (a-c), a, (a+c), which are in arithmetic progression. Show that the $a = \frac{-q}{3p}$ and hence show that $2q^3 - 9pqr + 27p^2s = 0$.

Sum of roots: $3a = -\frac{q}{P}.$ $\alpha = -\frac{q}{3p}$ $p\left(-\frac{q}{3p}\right)^{3} + 2\left(-\frac{2}{3p}\right)^{2} + r\left(-\frac{q}{3p}\right) + s = 0$ $\frac{-pq^{3}}{27p^{3}} + \frac{q^{3}}{9p^{2}} - \frac{rq}{3p} + s = 0$ $-q^{3} + 3q^{3} - 9prq + 27p^{2}s = 0$ $2q^{3} - 9prq + 27p^{2}s = 0$ (9) The equation $px^3 + qx^2 + rx + s = 0$ has the roots ac, a and $\frac{a}{c}$, which are in geometric progression. Show that $a = \sqrt[3]{\left(-s/p\right)}$ and hence show that $pr^3 - q^3s = 0$.

product of roots: $\alpha = \sqrt[3]{-\frac{5}{n}}$ $p(-\frac{s}{p}) + q^{3} - \frac{s}{p}^{2} + r^{3} - \frac{s}{p} + s = 0$ $-s + q 3\sqrt{\frac{-s}{p}^2} + r 3\sqrt{\frac{-s}{p}} + s = 0$ 935-5 = -435-5 $\int_{S} \left(-\frac{h}{2}\right)_{z} = -\frac{h}{2}\left(-\frac{h}{2}\right)_{z}$ 935× = 13/2 935 = 13p 13p-q3s=0

(10) The equation $x^3 + x^2 - 2x - 3 = 0$ has roots α , β and γ . Find the equations with roots

(a)
$$\frac{\alpha}{2}$$
, $\frac{\beta}{2}$ and $\frac{\gamma}{2}$;

$$\frac{1-x^{2}}{x^{2}}$$

$$\frac{2x}{3} + \frac{(2x)^{2} - 2(2x)^{2} - 3}{3} = 0$$

$$\frac{1-\frac{0x}{2}}{2x-x}$$

$$\frac{2x^{3} + 4x^{2} - 4x - 3 = 0}{3}$$

$$8x^3 + 4x^2 - 4x - 3 = 0$$

(b) $\alpha + 2$, $\beta + 2$ and $\gamma + 2$.

$$(x-2)^{3} + (x-2)^{2} - 2(x-2) - 3 = 0$$

$$\lambda^{3} - 3 \lambda^{2}(2) + 3\lambda(2^{2}) - 2^{3} + \lambda^{2} - 4\lambda + 4 - 2\lambda + 4 - 3 = 0$$

$$x^{3} - 6x^{2} + 12x - 8 + x^{2} - 4x + 4 - 2x + 4 - 3 = 0$$

$$\chi^{3} = 5\chi^{2} + 6\chi - 3 = 0.$$

$$x^3 - 5x^2 + 6x - 3 = 0$$

Qu. (11) (a) The polynomial $\alpha x^{n+1} + \beta x^n + 1$ is divisible by $(x-1)^2$. Show that $\alpha = n$, and $\beta = -(1+n)$.

$$P(\alpha) = \alpha(n+1) \times n + \beta n \times n^{-1} = 0$$

$$P'(i) = \alpha(n+1) + \beta n = 0$$

$$\alpha(n+1) = -\beta n$$

$$\alpha = n / \beta = -(n+1)$$

(b) Prove that $1+x+\frac{x^2}{2!}+....+\frac{x^n}{n!}$ has no multiple roots for any $n \ge 1$.

$$P'(x) = 1 + \frac{2x}{2!} + \dots + \frac{n \times n - 1}{n!}$$

$$= 1 + \frac{x}{1!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

as N.7!, all x will be >0 \rightarrow Not necessarily true.

Instead try proof by contradiction, please est me!

If T > 0

: no multiple roots

roots: X, X, B

Find α and β , given that $z^3 + 3z + 2i = (z - \alpha)^2 (z - \beta)$.

 $\alpha = -i, \beta = 2i$

Ou. (13) (HSC 1994)

- Let $x = \alpha$ be a root of the quartic polynomial $P(x) = x^4 + Ax^3 + Bx^2 + Ax + 1$, where A and B are real. Note that α may be complex.
 - Show that $\alpha \neq 0$.

$$P(\alpha) = 0 \qquad \alpha^{4} + A\alpha^{3} + B\alpha^{2} + A\alpha + 1 = 0$$

(ii) Show that
$$x = \alpha$$
 is also a root of $Q(x) = x^2 + \frac{1}{x^2} + A\left(x + \frac{1}{x}\right) + B$.

$$Q(\alpha) = \alpha^2 + \frac{1}{\alpha^2} + A\left(\alpha + \frac{1}{\alpha}\right) + B /$$

$$= \alpha^4 + 1 + A\alpha^2 \left(\alpha + \frac{1}{\alpha}\right) + B\alpha^2$$

$$= \alpha^4 + A\alpha^3 + B\alpha^2 + A\alpha^4$$

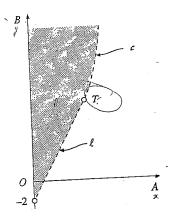
(iii) With
$$u = x + \frac{1}{x}$$
, show that $Q(x)$ becomes $R(u) \Rightarrow u^2 + Au + (B-2)$.

$$\mathbb{Q}(x) = x^2 + \frac{1}{x}x + A(x + \frac{1}{x}) + B$$

$$= \left[\left(x + \frac{1}{x} \right)^2 - 2 \right] + A \left[x + \frac{1}{x} \right] + B$$

$$R(u) = u^2 + Au + B - 2$$

(iv) For certain values of A and B, P(x) has no real roots and $A \ge 0$.



A(* A-77 B-74

The region **D** is shaded in the figure. Specify the bounding straight-line segment 1 and curved segment C. Determine coordinates of T.

$$R(u) = u^{2} + Au + (B-2).$$

$$\Delta = b^{2} - 4ac$$

$$= A^{2} - 4(B-2).$$

$$\Delta < 0.$$

$$\therefore h^{2} - 4(B-2) < 0$$

$$u = x + \frac{1}{x}$$

$$ux = x^{2} + 1$$

$$x^{2} - ux + 1 = 0$$

$$\Delta = u^{2} - 1$$

$$\Delta < 0$$

$$u^{2} - 4 \neq 0$$

$$-2 < U < 2$$

$$R(-2) = 4 - 2A + B - 2 = 0$$

$$B = 2A - 2$$

$$W = 2 R(2) = 4 + 2A + B - 2 = 0$$

$$B = -2A - 2$$

$$L has the gradient 1. B = 2A - 2$$

$$B = 2A - 2$$
 $A^{2} - 4(B - 2) = 0$
 $A^{2} - 4(2A - 4) = 0$
 $A^{2} - 8A + 16 = 0$
 $(A - 4)^{2} = 0$
 $A = 4$
 $B = 2(4) - 2$
 $= 6$
 $T(4,6)$

C.E.M - YEAR 12 - EXT.2 LESSON NOTES - REVIEW of POLYNOMIALS II

Qu. (14) (HSC 1995)

(5) (b) Let $f(t) = t^3 + ct + d$, where c and d are constants. Suppose that the equation f(t) = 0 has three distinct real roots, t_1 , t_2 , and t_3 .

(i) Find
$$t_1 + t_2 + t_3$$
.
Sum of voots $=$ 0

(iii) Since the roots are real and distinct, the graph of y = f(t) has two turning points, at t = u and t = v, and $f(u) \cdot f(v) < 0$. Show that $27d^2 + 4c^3 < 0$.

$$3t^{2} + c = 0.$$

$$t^{2} = -\frac{c}{3}$$

$$t = \frac{c}{3}$$

Haze let:
$$u = \sqrt{-\frac{c}{3}}$$

$$f(u) \cdot f(v) = \left[\left(\frac{-\frac{c}{3}}{3} \right)^{\frac{3}{2}} + c \right] \left[\left(-\frac{-\frac{c}{3}}{3} \right)^{\frac{3}{3}} - c \right] - \frac{c}{3} + d \right] < 0$$

$$= \left[-\frac{c}{3} \sqrt{-\frac{c}{3}} + c \right] \left[+\frac{c}{3} \sqrt{-\frac{c}{3}} - c \right] - \frac{c}{3} + d < 0$$

$$= \left[-\frac{c^{2}}{3} \sqrt{-\frac{c}{3}} + \frac{c^{2}}{3} \left(-\frac{c}{3} \right) - \frac{dc}{3} \sqrt{\frac{c}{3}} + \frac{c^{2}}{3} \left(-\frac{c}{3} \right) - c^{2} \left(-\frac{c}{3} \right) + d < 0 \right]$$

$$+ \frac{cd}{3} \left(-\frac{c}{3} \right) - cd \sqrt{\frac{c}{3}} + d^{2} < 0$$

$$= \frac{c^{3}}{27} - \frac{c^{3}}{9} - \frac{c^{3}}{9} + \frac{c^{3}}{3} + d^{2} < 0$$

$$= \frac{4c^{3}}{27} + d^{2} < 0$$

- 403 + 27d2 20 .

Qu. (15) HSC 1996

(5) (b) Consider the polynomial equation

$$x^4 + ax^3 + bx^2 + cx + d = 0,$$

where a, b, c, and d are integers. Suppose the equation has a root of the form ki, where k is real, and $k \neq 0$.

State why the conjugate -ki is also a root.

(ii) Show that $c = k^2 a$.

$$P(x) = x^{4} + ax^{3} + bx^{2} + cx + b^{2} = 0$$

$$P(ki) = (ki)^{4} + a(ki)^{3} + b(ki)^{2} / c(ki) + d = 0$$

$$= k^{4} - ax^{3}i - k^{2}b + cki + d$$

$$P(-ki) = (-ki)^{4} + a(-ki)^{3} + b(-ki)^{2} + c(-ki) + d = 0$$

$$= k^{4} + ax^{3}i - by^{2} - cki + d = 0$$

$$P(ki) - P(-ki) = -2\alpha k^{3}i + 2\alpha k^{2} = 0$$

 $2ki(C - \alpha k^{2}) = 0$
 $C - \alpha k^{2} = 0$. $\sqrt{C} = \alpha k^{2}$

Show that $c^2 + a^2d = abc$.

$$P(ki) + P(-ki) = 0$$

$$2k4 - 2k^{2}b + 2d = 0.$$

$$2(\frac{c}{a})^{2} - 2b(\frac{c}{a}) + 2d = 0.$$

$$\frac{c^{2}}{a^{2}} - \frac{bc}{a} + d = 0.$$

$$c^{2} - abc + ad = 0.$$

$$c^{2} + a^{2}d = abc.$$

If 2 is also a root of the equation and b=0, show that c is even.

$$|(kiX-ki)+2ki+aki-2ki-aki+2a=b)$$

$$|(kiX-ki)+2ki+aki+2a=b)$$

$$\frac{c}{2l} = \frac{c}{2a} + 2a = 0.$$

$$\frac{c}{a} = -2a$$

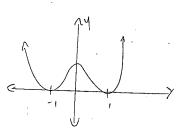
$$c = -2a^2$$

(3) (b) Let $f(x) = 3x^5 - 10x^3 + 16x$.

- (i) Show that $f'(x) \ge 1$ for all x.

* Prove
$$f'(x) = 16x^4 - 30x^2 + 16$$

from graph:
$$\{(x)^{\frac{1}{2}}\}$$



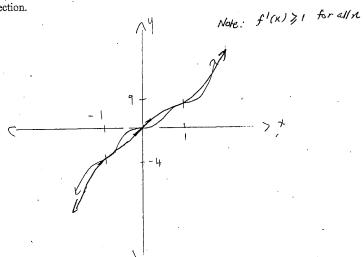
(ii) For what values of x is f''(x) positive?

$$f_{11}(x) = 60x^{3} - 60x^{2}$$

 $f_{11}(x) > 0$ when:

x > 1 and -1 < x < 0

(iii) Sketch the graph of y = f(x), indicating any turning points and points of inflection.



Qu. (17) (HSC 1997)

(5) (c) Suppose that b and d are real numbers and $d \neq 0$. Consider the polynomial

$$P(z) = z^4 + bz^2 + d.$$

The polynomial has a double root α .

(i) Prove that P'(z) is an odd function. (i.e. prove P'(-z) = -P'(z))

$$P'(z) = 4z^3 - 2b(z)$$

$$P'(-z) = 4(-z)^3 - 2b(-z)$$

$$= -4z^3 + 2bz$$

$$-P(z) = -(4z^3 - 2bz)$$

$$= -4z^3 + 2bz$$

$$= P(-z)$$
odd fn

(ii) Prove that $-\alpha$ is also a double root of P(z).

$$P^{1}(\alpha) = 0$$
.
 $4a^{3} - 2ba = 0$.
 $P^{1}(-\alpha) = -4a^{3} + 2ba$.
 $= -(4a^{3} - 2ba)$
 $= -(0)$
 $= -(0)$
 $= -(0)$
 $= -(0)$

(iii) Prove that $d = \frac{b^2}{4}$

$$b^{2} = 0 \quad (dauble voot)$$

$$b^{2} = 4d = 0$$

$$d = \frac{b^{2}}{4}$$

(iv) For what values of b does P(z) have a double root equal to $\sqrt{3}i$?

$$p(z) = 4z^{3} - 26z$$

$$p'(3i) = 0$$

$$4(3i)^{3} - 2b(3i) = 0$$

$$(3i)[-12 - 2b] = 0$$

$$(-3)(-12 - 2b) = 0$$

$$3b + 6b = 0$$

$$b = 6$$

|b = 6|

$$D = b^2 - 4d \longrightarrow \text{Peal roots}: D = b$$
Using $Z d \beta = \alpha (-a) + \alpha (0) + (-a) \alpha 0 = \frac{b}{2}$

$$\therefore \alpha^2 = -\frac{b}{2}$$

$$b < 0 \text{ for real } d$$

b < 0

2

Qu. (18) (HSC 2002)

(b) Let α , β , and γ be the roots of the equation $x^3 - 5x^2 + 5 = 0$.

(i) Find a polynomial equation with integer coefficients whose roots are $\alpha - 1$, $\beta - 1$, and $\gamma - 1$.

$$\begin{array}{c} x = d - 1 \\ x = 1 = 0 \\ (x + 1)^3 - 5(x + 1)^2 + 5 = 0 \\ x^3 + 3x^2 - (3x + 1 - 5x^2 - 10x - 5 + 5 = 0) \\ x^3 - 2x^2 - 7x + 1 = 0 \end{array}$$

(ii) Find a polynomial equation with integer coefficients whose roots are

16(Ox) - K(Q(x))

7

 α^2 , β^2 , and γ^2 .

$$(5)^{3}-5(5x)^{2}+5 = 0.$$

$$x5x - 5x + 5 = 0$$

$$x5x = 5(x-1)/$$

$$x^{2} \cdot x = 25(x^{2}-2x+1)$$

$$x^{3}-25x^{2} + 50x - 25 = 0$$

$$x^3 - 25x^2 + 50x - 25 = 0$$

2

(iii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

$$\alpha^{3}+\beta^{3}+\beta^{3} = 5 (\alpha^{2}+\beta^{2}+\delta^{2}) - 5(3)$$

$$= 5[25] - 15.$$

$$= (10.)$$

Qu. (19) (HSC 1998)

(4) (a) (i) Suppose that k is a double root of the polynomial equation f(x) = 0. Show that f'(k) = 0.

if k is double
$$f(x) = (x-k)^{2}Q(x)$$

 $f'(x) = (x-k)^{2}Q'(x) / Q(x) \times 2(x-k)$

$$f(k) = 0$$
.
 $f'(k) = (k-k)^2 G'(k) + 3 G(k)(k-k)$

(ii) What feature does the graph of a polynomial have at a mot of multiplicity 2?

(iii) The polynomial $P(x) = ax^7 + bx^6 + 1$ is divisible by $(x-1)^2$. Find the coefficients a and b.

$$P(1) = 0$$
. $P'(x) = 70x^{6} + 6bx^{5} = 0$
 $a+b=-1$. $P'(1) = 7a + 6b = 0$.
 $7a+6(-1-a) = 0$.
 $7a-6-6a = 0$
 $a=6$.
 $b=-7$

$$a = 6, b = -7$$

(iv) Let $E(x)=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}$. Prove that E(x)=0 has no double roots. Let α be the double root $2x + \frac{x^3}{6} + \frac{x^4}{24} = 0$

6e the double root 2

$$P E'(x) = 1 + \frac{2x}{2} + \frac{3x^2}{6} + \frac{4x^3}{2} + \frac{2x}{6} = 0$$

$$1 + x + \frac{x^2}{2} + \frac{x^3}{6} = \frac{x^4}{24}$$

$$1 + x + \frac{x^2}{2} + \frac{x^3}{6} = \frac{x^4}{24}$$

$$1+x+\frac{x^2}{2}+\frac{x^3}{6}=-\frac{x^4}{24}$$

$$0 = -\frac{x^4}{24} \Rightarrow x = 0 \quad \text{but } E(0) = 1 \quad \text{i. } x \text{ cannot be}$$
a double not

(6) (a) Consider the following statements about a polynomial Q(x). Indicate whether each of these statements is true or false. Tive reasons for your answers.

If Q(x) is even, then Q'(x) is odd.

$$Q(x) = \alpha x^2 + b$$

True

$$\Rightarrow \alpha'(-x) = 2\alpha(-x)$$

$$= -2\alpha x$$

If Q'(x) is even, then Q(x) is odd.

Follse. Similarly let
$$o'(x) = 4x^{4} + bx^{2} + c$$

$$a(x) = \frac{ax^{5}}{5} + \frac{bx^{3}}{3} + cx + d$$

$$a(x) = -\frac{ax^{5}}{5} - \frac{bx^{3}}{3} - cx + d$$
FALSE

+ Q(x)

· False

(HSC 1999) Qu. (20)

(2) (d) Consider the equation $2z^3 - 3z^2 + 18z + 10 = 0$ (i) Given that 1 - 3i is a root of the equation, explain why 1 + 3i is another root. conjugate voots.

Find all roots of the equation.

$$(1-3i)(1+3i) \alpha = -\frac{10}{2}$$

 $(1+9) \alpha = -5$
 $(0\alpha = -5)$
 $\alpha = -\frac{1}{2}$
 $\alpha = -\frac{1}{2}$

$$1-3i,1+3i,-\frac{1}{2}$$

3

Ou. (21) (HSC 1999)

The roots of $x^3 + 5x^2 + 11 = 0$, are α, β and γ . (5) (a)

Find the polynomial equation whose roots are α^2 , β^2 and γ^2 .

$$x = x^{2}$$
 $(\sqrt{x})^{3} + 5\sqrt{x^{2}} + 11 = 0$
 $\sqrt{x} = x$.
 $x\sqrt{x} = -5x - 11$
 $= -(6x + 11)$
 $x^{3} = 25x^{2} + 110x + 121$
 $x^{3} - 25x^{2} - 110x - 121 = 0$

$$y^3 - 25y^2 - 110y - 121 = 0$$

(ii) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

Sum of roots =
$$-(\frac{4}{5})$$
 = 25.

25

26

Ou. (22) (HSC 2000)

(2) (b) Consider the equation $z^2 + az + (1+i) = 0$.

Find the complex number a, given that i is a root of the equation.

$$iX = \{+i\}$$
 $X = \frac{1}{i} + 1 + 1$
 $= i^3 + 1$

. to sum of roots

$$x+1 \neq c = -\alpha$$

 $\alpha = -1$

a = -1

(5) (a) Consider the polynomial $p(x) = ax^4 + bx^3 + cx^2 + dx + e$ where a, b, c, d and e are integers. Suppose α is an integer such that $p(\alpha) = 0$.

(i) Prove that α divides e.

$$P(x) = 0$$
 ...

 $Q(x)^{2} + (x)^{2} + dx = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$
 $Q(x)^{2} + (x)^{2} + (x)^{2} + (x)^{2} = 0$

$$\alpha = e \rightarrow \alpha \cdot c = e$$
Intoger.

(ii) Prove that the polynomial $q(x) = 4x^4 - x^3 + 3x^2 + 2x - 3$ does not have an integer root.

$$q(n) = 4n^4 - n^3 + 3n^2 + 2n - 3 = 0$$
.
If α is an integer root then it must divide -3 then try $p \cdot q(\pm 1) + q(\pm 3)$ to show that $\neq 0$.

Qu. (23) HSC 2001

(3) (b) The numbers α , β and γ satisfy the equations

$$\alpha + \beta + \gamma = 3$$

$$\alpha^2 + \beta^2 + \gamma^2 = 1$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 2.$$

(i) Find the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. Explain why α , β and γ are the roots of the cubic equation $x^3 - 3x^2 + 4x - 2 = 0.$

$$\alpha^{2}+\beta^{2}+\beta^{2} = (\alpha+\beta+\delta)^{2} - 2(\alpha\beta+\beta\delta+\delta\alpha)$$

$$= 9 - 2(\alpha\beta+\beta\delta+\delta\alpha)$$

$$= \frac{1}{\alpha\beta+\beta\delta+\delta\alpha} = \frac{1}{\alpha\beta}$$

$$= \frac{1}{\alpha\beta\delta}$$

$$= \frac{1}{\alpha\beta\delta}$$

$$= \frac{1}{\alpha\beta\delta}$$

$$= \frac{1}{\alpha\beta\delta}$$

Qu. (24) HSC 2001

Sum 2 = 3. Eaß = 4 } fits calculations x B x = 2 x B, Y are voots of eq=

 $\sum \alpha \beta = 4, \ \alpha \beta \gamma = 2$

(ii) Find the values of α , β and γ .

$$P(x) = x^{3} - 3x^{2} + 4x - 2 = 0.$$

$$P(x) = 0.$$

$$\begin{array}{c} x^{2} - 2x + 2 \\ x^{3} - 3x^{2} + 4x - 2 \\ \hline -2x^{2} + 4x \\ \hline -2x^{2} + 1x \end{array}$$

$$x^{2} - 2x + 2 = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4(2)}}{2}$$

$$= \frac{2 \pm \sqrt{-4}}{2}$$

$$= 1 \pm i$$

 $= 1 \pm i$ $\boxed{1, 1+i, 1-i}$

i roots are Iti, I.

7 *(b) Consider the equation $x^3 - 3x - 1 = 0$, which we denote by (*).

(i) Let $x = \frac{p}{q}$ where p and q are integers having no common divisors other than +1 and -1. Suppose that x is a root of the equation $ax^3 - 3x + b = 0$, where a and b are integers.

Explain why p divides b and why q divides a. Deduce that (*) does not have a rational root.

if x is a coot of *
$$p \cdot n = b$$
 $q \cdot m = a$

$$a\left(\frac{p}{q}\right)^{3} - 3\left(\frac{p}{q}\right) + b = 0$$

$$\frac{ap^{3}}{q^{3}} - \frac{3p}{q} + b = 0$$

$$p\left(\frac{ap^{2}}{q^{3}} - \frac{3p}{q}\right) - b$$
with integers : $p = b$

$$ap^{3} - 3pq^{2} + bq^{3} = 0$$

$$a - \frac{3q^{2}}{p^{3}} + \frac{bq^{3}}{p^{3}} = 0$$

$$a - \frac{3q^{2}}{p^{3}} - \frac{3q}{p^{3}} = 0$$

$$p/-1 \rightarrow p=\pm 1$$
 $q/1 \rightarrow q=\pm 1$
 $x=q=\pm 1$
 $y=q=\pm 1$
 $y=q=\pm$

no rational roots

(ii) Suppose that r, s and d are rational numbers and that \sqrt{d} is irrational. Assume that $r + s\sqrt{d}$ is a root of (*).

Show that $3r^2s + s^3d - 3s = 0$ and show that $r - s\sqrt{d}$ must also be a root of (*).

Deduce from this result and part (i), that no root of (*) can be expressed in the form $r+s\sqrt{d}$ with r, s and d rational.

$$p(x) = x^{3} - 3x - 1$$
if $r^{4} + s \cdot 1d^{-1} = \alpha$ root
$$r - s \cdot 5d = a \cdot so = \alpha = root \quad (ropulgate = root + leorem)$$

$$p(r + s \cdot 1d) = (r + s \cdot 1d)^{3} - 3(r + s \cdot 5d) - 1 = 0$$

$$r^{3} + 3r^{2} + 3r^{2} + 3r^{2} + s^{3} + 3r^{2} + s^{3} + 3r^{2} + 3r^{$$

Ja (3 r 2 s + s3d - 3 s) 2

 $\frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{12}$

if ristalis a root; of talis rational

r+sId \neq voot (no rational roots).

if π is reational:

(let roots be, r+s π d, r-s π d, γ

2r = -8/ -> rational roots

 $= -(r^3 - 3r - 1)$

:. V + S Ja ≠ root.

no roots can be expressed in form rts sa

(iii) Show that one root of (*) is $2\cos\frac{\pi}{9}$.

(You may assume the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.)

$$x^3 - 3x - 1 = 0$$

$$(01 \ 2 = 6050 \ (0530 \ - (30530 + 1) = 0$$

$$\cos 3\theta = 1 \pm 30530$$

Qu. (25) HSC 2002

(5 (a) The equation $4x^3 - 27x + k = 0$ has a double root. Find the possible values of k.

$$P(x) = 4163 - 27x + K$$

$$\chi^{2} = \frac{27}{12}$$

$$\chi^{2} = \frac{13\sqrt{3}}{2\sqrt{3}}$$

$$= \frac{13}{2}$$

$$P(\frac{3}{5}) = 0$$

$$4\left(\frac{3}{2}\right)^3 - 27\left(\frac{3}{2}\right) + L = 0$$

$$\frac{27}{2} - \frac{81}{2} + k = 0$$

$$P\left(-\frac{3}{2}\right)=0.$$

$$-\frac{27}{2}+\frac{81}{2}+k=0$$