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(1) (a) The complex number z and its conjugate z satisfy the equation
zz + 2iz = 12 + 6i . Find the possible values of z.

(b) 1+i isaroot of the equation x2 + (a+2i)x+ (5+ib)=0, where a and b are real.
Find the values of ¢ and 5.
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(2) (a) 1-2i isone root of the equation x2 +(1+i)x+k=0.
Find the other root and the value of %.

k=5,x=-2+1i
(b) Find the zeros of P(x)=x*-4x?+3=0
) over Q;
(ii) over R;
+1,4/3

(iii))  over C,

+1,+/3
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(3) (a) Find P(x), given that P(x) is monic, of degree 3, with 5 as a single zero and -2 as a
zero of multiplicity 2.

P(x)=x>—x% -16x-20

(b)  P(x) is an even monic polynomial of degree 4 with integer coefficients. If v2 is a
zero, and the constant term is 6, factorise P(x) fully over R.

P(x) = (x —2)(x +V2)(x = 3)(x +4/3)
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“) If P(x)=x>-3x% - 9x +c has a double zero, find ¢ and factorise P(x) over the real
numbers. '

c=27 P(x)=(x-3)"(x+3);
c==5 P(x)=(x+1)*(x—5)
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6 It ax> +cx+d =0 has a double root, show that 4c> +27ad? =0.
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(6) (8) When P(x)=x* +ax? +2x is divided by x2 +1, the remainder is 2x+3.
Find the value of a.

a=-2

(b) When P(x)=x*+ax? +bx+2 is divided by x? +1, the remainder is —x+1.
Find the values of ¢ and 5.
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(7) (a) Two ofthe roots of 3% +ax? +23x—6=0 are reciprocals. Find the value of a and
the three roots.

a =-16; roots are 3,%,2
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(8) The equation px3 4+ gx? +rx+s=0 hasroots (a—c), a, (a+c), which are in arithmetic

progression. Show that the a = %1 and hence show that 2> —9pgr +27 pls=0.
P
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(9) The equation px> + gx% +rx+s =0 has the roots ac, a and @ which are in geometric
C

progression. Show that a =3/(-s/ p) and hence show that prd—q3s=0.
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(10)  The equation x* + x? —2x—3 =0 has roots o, and y. Find the equations with roots

a B Y
a) —,2 and ~;
@) 272 2

‘78)63 +4x% —4x-3=0

(b) a+2,p+2andy +2.

x3=5x2 +6x-3=0
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Qu. (11) (a) The polynomial czx™" + Bx" +1 is divisible by (x —1)2 :
Show that & =n, and B =—-(1+n).

2 n

(b) Prove that 1+ x + X +f—' has no multiple roots for any n>1.
n!
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Qu. (12) (HSC 1994)
4) (a) Find o and 3, given that z’ +3z+2i= (z—a')2 (z-p).

Qu. (13) (HSC 1994)

(8) (b) Let x=a be aroot of the quartic polynomial P(x)=x"+Ax’ + Bx* + Ax +1,

where 4 and B are real. Note that & may be complex.

(1) Show that « # 0.
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(i)  Show that x =« isalso arootof Q(x)=x’ +—$2—+A(x+%j+3.

(iii)  With u =x+l, show that Q(x)becomes R(u)=u’+ Au+(B-2).
x
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(iv)  For certain values of 4 and B, P(x) has no real roots and 42>0.

WBM

%

The region D is shaded in the figure. Specify the bounding straight-line segment 1 and

curved segment C. Determine coordinates of 7.

T(4,6)
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Qu. (14) (HSC 1995)
(5) (b) Let f(¢t)=¢+ct+d, where c and d are constants. Suppose that the equation

£ (¢) =0 has three distinct real roots, 1, f,, and £,.

1) Find ¢ +¢, +1,.

(ii) Show that ¢, +1," +1,” = —2c.
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(iii)  Since the roots are real and distinct, the graph of y = f (t) has two turning points,
at t=uand ¢=v, and f (u).f (v) <0.
Show that 27d” +4¢’ < 0.
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Qu. (15) HSC 1996
(5) (b) Consider the polynomial equation

xt+ax® +bx* +ex+d =0,

where a, b, ¢, and d are integers. Suppose the equation has a root of the form £i,
where kisreal, and k£ = 0.

(1) State why the conjugate —#i is also a root.

(ii) Show that ¢ = k’a.
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(iii)  Show that ¢* +a’d = abc.

(iv)  If2is also aroot of the equation and 5=0, show that c is even.
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Qu. (16) (HSC 1997)
(3) (b)) Let f(x)=3x"~10x* +16x.

(i) Show that f'(x)=1forallx.

(i) For what values of x is /"(x) positive?

[x>1 and —1<x<0|
(iii) Sketch the graph of y = f(x), indicating any turning points and points of

inflection.




C.EM - YEAR 12 - EXT.2 LESSON NOTES — REVIEW of POLYNOMIALS II

20

Qu. (17) (HSC 1997)
(5) (¢) Suppose that b and d are real numbers and d # 0. Consider the polynomial

P(z)=z4+bz2+d.

The polynomial has a double root .

@) Prove that P'(z) is an odd function. (i.e. prove P'(~z)=-P'(z))

(i)  Prove that —a isalso a double root of P(z).

2

(ili)  Provethat d = %
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(iv)  For what values of b does P(z) have a double root equal to J3i?

V) For what values of b does P(z) have real roots?

b<0
Qu. (18) (HSC 2002)
(b) Let &, B, and ¥ be the roots of the equation B =52 +5=0.
(i) Find a polynomial equation with integer coefficients whose roots are 2

o—1,8-1,and y- L.

|x® -2 —7x+1=0
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(i) Find a polynomial equation with integer coefficients whose roots are

o?, 82, and %

(iii) Find the value of o+ >+ 7>,

¥ —25x* +50x-25=0

2

[y
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Qu. (19) (HSC 1998)
(4) (a) () Suppose that k is a double root of the polynomial equation 1 (x)=0. 7

Show that f'(k)=0.

(ii) What feature does the graph of a polynomial have at a root of multiplicity 27?

(iii) The polynomial P (x) =ax’ +bx® +1 is divisible by (x —1)2 .

Find the coefficients a and b.
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2 3 4
(iv) Let E(x)=1+x+ x?+ %+~;Z Prove that £(x)=0 has no double roots.

(6) (a) Consider the following statements about a polynomial Q(x). Indicate whether each of

these statements is true or false. Give reasons for your answers.

(i)  If O(x) is even, then Q'(x) is odd.

(i)  If Q'(x) is even, then Q(x) is odd.
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Qu. (20) (HSC 1999)

(2) (d) Consider the equation 2z> —3z> +18z+10=0 2
(i) Given that 1 — 3i is a root of the equation, explain why 1 + 3i is another root.

(i)  Find all roots of the equation.

1--31',1+3i,—l
2

Qu. (21) (HSC 1999)
(%) (a) The roots of x* +5x”> +11=0, are o, and y. 3

(i) Find the polynomial equation whose roots are &, 8 and »°.

Y =25y -110y-121=0
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(i)  Find the value of o + A% +7°.

Qu. (22) (HSC 2000)
(2)(®)  Consider the equation z* +az+(1+i)=0. 2

Find the complex number g, given that i is a root of the equation.

(5) (@ Consider the polynomial p(x)=ax*+bx’ +cx’ +dx+e 4
where a,b,c,d and e are integers. Suppose « is an integer such that
p(a)=0.

@) Prove that « divides e.
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(i)  Prove that the polynomial ¢(x)=4x" —x’ +3x* +2x -3 does not have an integer

root.

Qu. (23) HSC 2001
(3) (b) The numbers «, £ and y satisfy the equations

a+p+y=3

al+ Byt =1

1 + 1 + 1 =2.
a By
(i) Find the values of aff + fy+yx and oaffy. 3

Explain why «, f# and vy are the roots of the cubic equation

¥ =3x2 +4x-2=0.
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Zaﬁ =4, affy =2
(ii) Find the values of «, f and Y. 2
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Qu. (24) HSC 2001
7 *(b) Consider the equation X —3x-1=0, which we denote by (*).

(i) Letx= g where p and q are integers having no common divisors other
than +1 and —1. Suppose that x is a root of the equation ax’-3x+b=0,

where a and b are integers.
Explain why p divides b and why g divides a. Deduce that (*) does not

have a rational root.
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(i) Suppose that r, s and d are rational numbers and that d is irrational. 4
Assume that r+s+/d is a root of (¥).

Show that 3r%s +s°d - 3s =0 and show that r— s+/d must also be a root
of (*).

Deduce from this result and part (i), that no root of (*) can be expressed
in the form 7+ s+/d with r, s and d rational.
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(iii) Show that one root of (*) is 2005—792. 1

(You may assume the identity cos36 = 4cos’ 8 —3co0sb.)
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_Qu. (25) HSC 2002

€ (a) The equation 4x>~27x+k=0 has a double root. Find the possible values of k.

2
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NAME ;. (1) (2) The complex number z and its conjugate z satisfy the equation
. 27+ 2iz = 12 + 6i . Find the possible values of z.
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g i gy oy
I O yr-2y -3 =0
¥ N o {
o - E Gy -3)0yt) =0
.4_ 9 N u 13 EJ:M,
1. 6 1
2 6
8% 6.
6. 3 .
' 3 (b) 1+ is aroot of the equation xz+(a+2i)x+(5+ib)=0,whéreaandbarereal.
Z 1 fi3 : Find the values of a and b.

Uei2? (Mz;)(ui) tC b :O/-

oA s aai2i-z #5 b0
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v a=-3 /

comech o O _ . ) bo-]

Py 2,61, 19,R 24,27
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2

(2) (@) 1-2i is oneroot of the equation 2+ (l+ixrk=0..
Find the other root and the value of k.

-S\W\ 0%’!!60’{"8: - L
1-10 =+ l{uﬂ = — (1)
L = -\ ‘/ )
it =o) -24y=-1
1‘3"4?, b} - \

ovoot 1S —24C
Pmollum—'mt voor S -
(L2)-221) = %

S STy BN

5({ kL. V—.’ZG(
(b) Find the zeros of P(x) =x—4x?+3=0
@ over Q;
et we? \ Wi Y gy
I T

(w3 =100/

Wz 3} w |
(ii) over R;
L= f
A= 15
(i}i) '_overC,
P 4
W 5

*=

7(7,
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(3) (a) Find P(x), given that P(x) is monic, of degree 3, with 5 as a single zero and-2asa
zero of multiplicity 2.

o) = (A=)
L (aes Yt + w1 ty)
P S > _20%1 4 bx -0

-y -1t oo rewn -0

[f@)=x3—x2—wx—gq

(b) P(x) is an even monic polynomial of degree 4 with integer coefficients. If +/2 isa
zero, and the constant term is 6, factorise P(x) fully over R.

P st Dut o+ b
= '(71‘ *'::57\1“5')(712 4 g>
= (1""{1_);\7(—FL>(7L‘_’4 3 *IE)

[P()= (5 = V2 + 2= Y+ ¥3)



C.EM-YEAR 12 _EXT.2 LESSON NOTES — REVIEW of POLYNOMIALS II

4

If P(x) x3 ~3%? —9x +¢ has a double zero, find c and factorise P(x) over the real -

numbers. _
SAICD IS S S S |
Yx) =0.
- -3 =0
(%-3Aa~1)=0 /

=3 7L‘-’I./
Pizy = 3P -3(3*)-9) ¢ =0

-4t =0

Lo '1/7.

P O-3) P (a3

17-(”‘) =7 =30 5N =0

'A?"\C =0/
¢ =-5.

M) = () 1(7L—5)/
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[em27 P()=(x-37(x+3%;
c=-5 P(x)=(x+)*(=-5)

6 ¥ ax® +ex+d=0 has a double root, show that 43 _+27cta'2 =0.

pl)= aw ® -+ 57(+a(,

({71\2 = %an? L. :o/

Jant = —(.
- c
1 n
=/

(%) vc)-5 deo
% [abg) ) 9
F: (5)

o . et

B 30 t het
s 4y = '17‘”17 |
_ e :

Wed + 97ad * =



o0 = (QL%\X@)L) £ 2%+ 3.
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{6) \Ja)‘ When P(x)=x*+ax? +2x is divided by x2 +1, the remainder is 2x+3.

CEM— YEAR 12 — EXT.2 LESSON NOTES — REVIEW of POLYNOMIALS I

Find the valye of a. or sah x=Ap % opuek el "’AM?'I'L? A
anbe,

the three roots.
1 '
g La-t)

7i-ael o 2k 43 £ _ _ SR
Liep ) wk eatt 4 L p ' oo be By k
_ D -
RIS L / s / Loy . b
"”“’r’m < P 5& - —2 o - 3
RIS S aTTe \ /
(A~ nt ca-t) "t
A M"’—""’“"‘M 21
- [Yi £l : 0\"‘& + 0o 4 % - -f;
B
W+ 2 20
a=-2 ?2 /
(b) When P(x)=x* +ax? wbx+2 is divided by x2 +1, the remainder is —x +1. 9@+ E T
Find the values of-a and b. 7_7 cedg "’M‘W K=c o -
: ba?+ b = 204
T cexez Lot-200tb=0
30 -loax 3=°
+ 2 S 3at-qo-anse
(G-iyp* o - . g : ’ £ /
__.q.ii__k_;__fj G-t ' _ - RQa -t Ao .3 ) =0
- : . : _ A
e . Lt | w= 7 0 5
\
b}.l... - 4 _ _Q(\_
A / _Q.“er} T | CEAE A 3
. b:'ﬁ ' / oL .
, 0z : 1+t 6 =l /
o= -lb.
o L
Soow=A6,  rools ¢ 3, 3, K
a=2,b=-1

(7) (8) Two of the roots of 3x° +ax® +23x—6=0 are reciprocals. Find the value of a and

a=-16; roots are 3,1,2
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(8) The equation px’ +gx% +rx+5=0 hasroots (a—¢), a, (a+¢c), which are in arithmetic

progression. Show that the a = gi and hence show that 24> —9pgr +27 pzs =0.
> = _ )

Suwm - of vooi<-

b

3= "¢
,i/

W= 3

:,.E.c(.// -+ ‘ﬂ:"‘ — I—l}-"— -lﬁ :—ﬂ.
2179 Ip* 3p

R TR TT AL
145 - Aprq 2’(579 =0

(9) The equation 4 gx? +rx+s =0 has the roots ac, @ and 2 which are in geometric
c

progression. Show that @ =3/(—s/p) and hence show that prd—g3s=0.

product of wols:
[F -
Q- - P
o3 [ -2
w: s ]2 |

|
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. 3 2 - 1= d X . . .
(1.0) The equation x* +x? ~2x—3=0 has roots o, andy Find the equations with roots Ou. (1) (a) The polynomial ax™ + B +1 is divisible by (x__l)z.

@ %’E a.nd%; ' 4 Show that @ =7, and B==(1+n).
. 3 . ) _ ) »
Lol () Ty 2{22) =3 =0 : - ' -t -
e GO / e <l Bt p
1% . ‘
3 t_ut -3:0
21 = %’X %l—!—ﬁ t A 3 / ?({’} = CLLV“"} -+ \3\/\_ =Q. -
o lstet) F- Bw
oo k= V\/ B =txl)
[8x3 +4x% —4x-3=0]
« 2 n .
(b) a+2,B+2andy+2. . ('b)Provethat1+x+3C2—!+....+% has no multiple roots for any rn=1.
e+ y
Ty . 22 pa !
X : oL Pegs e Bt
Wt
bl-l) ¥ (}-—1}1 S22 ,2) - =9 » | - >4 —:’l—L‘—- 4 _:i?“"
: ' - : ) w0t
2P -3 w2 {) L 32y - 2% e wio o 4 - tH oS =a : : .
_ Q , ‘

37 2 2 '/ ‘ , >Rzl ;o o wil e =0 et """"‘"“"// froe .
—bX T A -y oyt G 4320 noteads fry proof by
. o VT S S soniredieriens |

X7 - 5xt 46 - 330 / ' , ' - o ey 71 ploaee ek m
it 71 70
. T >y
o+ T #0.
Pl 490

"o . V\f&’l}d ‘.’1 i}\ﬁ, > ﬁ)‘:’s
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o2 EsC 1004 0 ' ks o ol of, B.
(M Find o and §, given that z3+32+2i=(z—a)2(z—ﬂ).

Bg)s 23524 U

) = et A3, =0

- 7)‘ l\’,»‘é l,; 5\} 7’0 /

N o A :vc/
pwgw Pz Lo
“lelw Bozopy /
m—!x:ﬁ - Z‘q
Bos-u
. ¥, ’:wé/! Bﬁ l«?
e==]
Qu(13) (HSC1994)
(8) (b) Let x=¢ be a root of the quartic polynomial P-(Jé)—=x‘4+/1x3‘+ Bx? + Ax+1,
' where 4 and B are real. Note that ¢ may be complex.
® Show that a = 0.
pln) = 0 b(‘ﬂ‘;l\ec‘][iocﬁ Adt <0
o y=Q : P(O) = l
but” w5 o reoty - p{ O

/
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(i)  Show that x=¢ is also aroot of Q(x)=x2+i2+A(x+lJ+B.
x x
N { L
(W)™ « gt e g) 18
S S I pet (ot o)« pat

et 4 Aa 3+ Ba? */fi't/
IO_

(i) Withu=x +l, show that O (x) becomes R (u) =hy® + Au+ (B —2).
X

G e v A8/



i
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(iv)  For certain values of 4 and B, P(x) has no real roots and 420.

'AH‘ A7 E

7Y

The region D is shaded in the figure. Specify the bounding straight-line segment 1 and

curved segment C. Determine coordinates of T.

elw) =

b =

A ¢

.k

e R(-2)
W= 2 \2\(,2,) =
A hag 4ve

WA (820,
b*-4ac

b -ulgy,
0.
o k(g-2) ¢
= 4 -2hs+g-1=0

B: 2h-2.
be 2A4 B =20,
B=-2A-7, /

qwadx'tmf ;o Bz AL

wm g
ul =1t o)

NE - Ukl =0,
b= ur -y

b <0

S ul_y4 do
Sk e T

BZ2k-2
ARE-u(g-2):-9,

r\l-uLzA-m-]b.

k* -8A +1p Yo,
LA’"-F)L =0
Aoy

B 2W) -2 _
o/

'-T(Lh(,) /
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Qu. (14) (HSC 1995)
(5)(®) Let f (t) —F + ¢t +d, where ¢ and d are constants. Suppose that the equation

£ (t)=0 has three distinct real roots, 7, %, and #;.

()] Find £ +1, +1;.

U 6F geok - O/

(iD) Show that #7 +1,” +1,> =—2c.

(et b)) g (St

-/
B o’fz(;,,)

= -1c
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(if)  Since the roots are real and distinct, the graph of y =/ (#) has two turning points,
at t=uandt=v, anﬁ(u).f(v)<0.
Show that 27d* +4¢* <0~

L)z WO rtued
HORARE ALY

‘HJ‘) - 'tg t Ct ‘(‘_DL

;i-(v) d 3\/2/+o:O
fly - H‘vtt./

Pz o -
' wc 0.
the T
t _f_f——‘{ /
WLQI\'I.IL”_ J-&

Ged ¢ 274220 .

7]
T \Y - I3t
B i - T / . \/

) s Sutsc 20,
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Qu.(15) HSC 1996

(5) (t) Consider the polynomial equation
x*+ad +bx* +ex+d =0,

where @, b, ¢, and d are integers. Suppose the equation has a root of the form i,
where kis real, and k#0. '

@ State why the conjugate ki is also a root.
CONJUGEH 100 Hhoomum

Coo e are (nygusﬁ

(i) Showthat c= a.

P(X) = *D{)\I'-Ho)llf C)l*@‘i{ SN e

Play= " +a k) « i}y clei )+
LR AT P

=0

P(-[L}) : L—Li)k(' 1o (e )’ IRE L rel-m) <o

-0
ILL[ < W\L‘SL v-"b\/ -tk "cld 0 '

PLEY- PLE)=-20430 < 2080 =0

k(o) = 0
C>‘QLL =0 /

Coph?

N
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—
kl/ll) Show that ¢* +a*d = abe.

CEM~ YEAR 12 — EXT.2 LESSON NOTES —~ REVIEW of POLYNOMIALS I 19
Qu. (16) (HSC 1997) -2 -y g 1 2
c _ 3 t =3x° -10x’ . g
?(\U) . %_w‘): 0 L2 o e (3)(b) Let f{x)=3x"-10x"+16x 4 o
1 o (i) Showthat f'(x)=1forallx.
wH -2kt 24 =0 / FO)= WLy 3oyt ale
2(£) -26(5) v 2= 0 | P r)2 |
Lz , . ' . { 12
- _:b‘& e 420 . _ FIED) -1 0.
_ BX9-20%? 41 20
¢t~ oe +o%otao./ ' R/
Bxr o)t 5o,
et o+ a‘l A = abce. %\'O\N\qm‘)h; {‘bql_l. 20
EENCO T
(ii) For what values of x is f “(x) positive?
- ) = wond _yn. nY
. . {I!\b\) 70 . { 7
3 1 = i e . oL
(iv)  If2isalso aroot of the equation and & 0,' show that ¢ is even. b0y ()LLD 50 < f o
Teols ki -kl 2, & ( ‘ / v
VOB « o+ aft _ofs e £ 0 yhew
(s )+ 2y t gfei ‘/Z{f*ﬂ,lf( f e - b
’ St ey “—\4: . rrty —fet co
| . »
Teto- o A 2o =0 (iif) Sketch the graph of y = f(x), indicating any tuming points and points of
Vi oo inflection. ' A
’ - ’ / r
s Y/ . | A g F10 71
=< ¢ - - ZOL L. . -

.>7L
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Qu. (17) (ISC 1997) (v) . For what values of b does P(z) have a double root equal to +/3i7 -

(5) (c) Suppose that b and d are real numbers and 4 = 0. Consider the polynomial \ )
P(z)=z'+bz"+d. ' o ) - Uz? -z )
’ ) p! U—El) =0
The polynomial has a double root c. . : /
Y (5§ - 20(FH =0,

® Prove that P '(z) is an odd function. (i.e. prove P'(-z)=—P'(2) )

P\L? ) = LL%% - ,2‘0(7:'?/ ’ (ﬁl)[—‘z _2‘0] =9

C2) = 4e)! - 2bl2) | E3N-228) =00
. bzdiayn . 3b +bb. :=0O
~Ple) - bz 3. ‘ b - b |
C 2bz) :
P (I k‘é . @ For what values of b does P(z) have real roots?
- P‘("E) ) W 23zm . Hz) = mithwaad .
odd. fn ' . D= br-Ud = et oofs: D ro
(ii) Provethat —& isalso a double root of P (z). T : . ' t/r/irj 74(/! 2 (-1 )+ L(e)+ (~d)HO =,"f
Pl = 0. : TR
Lo® —qpq =0 ' ' o b <o Ao veal A, b<0
ok ' ' Qu.(18) (HSC2002) '

P(-('DO = ‘LI-O&;T?JOCL () Let ¢, B, and 7 be the roots of the equation L ~52+5=0.

= ULQ% ‘Qbf/o @ Find a polynomial equation with integer coefficients whose roots are 2.
- (0?/ - o-1,8-1,and y- 1.
szo _ o, also double roct 1T o -
@ Provethatd=-74—. : . - T T o
b o (dedde @ . ‘ . D! —t)(‘ldc\’)z“;ﬂ/
= o 00 :
/ PRI LIRS TR IS CRVD —7)/*720.
b? -4l O : L
» o Y3 oot ﬂ/:o
bzl '

b
A= =
g

| =2x’ —Tx+1=0
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(i) Find a polynomial equation with integer coefficients whose roots are 2
o, %, and y2. .
P
AT

8 3 -5(H) s =0/
W - pr+5 =0
o= 5(1,—\;)/
1L =25 (L-2%+1)
WP~ ¢ oy —zg/—/o

rx3 —25x +50x—25=ﬂ '

(iii) Find the value of o+ 5>+,

2
oY = Holt T
PSR AT SA ﬁ%o‘ t) -5(3)
= 5[25]) — 5
B (Lol/
110

\L(@)L = \L_(;®03>

CEM-YEAR 12 - EXT.2 LESSON NOTES — REVIEW of POLYNOMIALS IT

23
ﬁ)u. (1}) (HSC 1998)
(4) (a) fi) Suppose that k is a double root of the polynomial equation f (x) =0. 7

Show that f'(k)=0.

vt ol {0 - (1Y en)

wt‘b(-) = (x-x) L‘@)'()L)»/ (_{9(}&) < 2 (x-v) .
WY = o . ‘
L) = u~01®ﬁ7V+—zmxyy%Q

-0 .

Pl o 45 % ]i//&Dwa roct

(i) What feature does the graph of a polynomial have at a reot of multiplicity 27

Y «(wj ol on i»-(my

(iif) The polynomial P(x)=ax’ +x* +1 is divisible by (x—1)".
Find the coefficients 2 and 5.

P('O - O

LY XS 4601 =D
Ot =-1.

Py = T+ (g\of.
Tat b (-14) =0
' To-b-b6bo = O

a%,

b+ b :—}.

b ;—7_/

0= 6 / ' __a=6,b=—7
h=-77 .
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24- CEM-—
2
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2 3 4
(iv) Let E(x)= I+x+2+X +Z . Prove that E(x) Ohasno doubleroots Qu.(20) (HSC 1999)
Le o be Fhe doub/e rook 6 24 L ,(..L e + 9’- _,-3(_ o (2)(d) Consider the equation 27° —37° +182+10 0
P r ( k) 4 1L N ZXL UO(.Z E[l) ‘ : (i) Given that 1 —3iis aroot of the equation, eXplaanhy1+3113 another root.
. z , (ow) uoy et vooi}./
g /m ez A K | >
it x+ “ e > %4
- M
o - "T =y x =0 Aa,‘—E(b}: L cannot be
e & dewdle rof (i)  Find all roots of the equation.
3 o EEAED PSR Y Gt
L) eros . . . _
- ) : (l +D(> ol To-bh
. . (Ot =-5 / '
s
ol 1.
+ //.:7{_\‘/ 1+ 3¢

1—3i,1+3i,~—1-

2

3

Ou. (21) (HSC1999)
The roots of x* +5x° +11=0, are o, f and 7.

(6) (8) Consider the following statements abouta i x). Indicate whether each of
these statements is true or false.Give reasons for your answers. ’
o G @
* +b- ‘(i)  Find the polynomial equation whose roots are &, f* and 7
Ui =0

® () iseven, ﬂlen 0'(x) is odd. Q) = o ‘
QS - w“
) True . Gy 209 T Lt UI) R L
_ ' = &'(-x) = 2al) Y . /
_ . - zax AP = gy
- oalle ,
. edd = v = - (L)
- , 3
TRUE S L Ao, /]
=0

DI IS WA [T S Wl

(ii)\) If Q'(x) is even, then O(x) is odd.

: SimeTarly eF A
Fﬁth‘e ™ Mﬂ # b P2 ,-".7’\/‘ 4
ax b e \/\

.
@) =
. T
. : ax é)cj C,nlm(_
Q) = 22+ = A Y]
I \/
S—ﬂxfjé_ <+
6?(’() = - X . Cx )
- FALSE ‘ . :
£ @) [P -25y/ -110y-121=0]
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Find the value of & + 5% +7°.
Swm of roots = “(.jt-?) /
LT - ()

- 29 .

Qu. (22)

(HSC 2000)
@®

Consider the equation 2* +az+(1+1)=0.

Find the complex number g, given that i is a root of the équation,
let  othey gdr  be

o
%z

(+¢ .

‘l\,:ﬁi‘_—y\‘ x_'L"f-

:'\3._\_1 /

Yo Sum oF VOOTS

(5)(2) Consider the polynomial p(x)=ax' +bx’ +ex* +dx+e

wlzen): a,b,c,d and e ar@g?ﬁ? Suppose ¢ is an integer such that
pla)= 0.

. /\;‘\"_7/(. :—?/ .
) aqQ -
-l

26

5+ 20 -7 5*@=20
@) Prove that  divides e. A
» (nd@]e\,
P(k):-0 -7 x:e O{'QiQ.
0oL s ol Tt Co“+dbf/€ z0 : y\ﬁq,w
1 )
ol (003 +bt s et +d) =-@ '
o
ol eap /
©w Avdy @

@
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gl = Upt —p? 4 dmie2a -3 =0

Ifo(lk-fa/}’\f/”’dfﬁeﬂ

Qu. (23) HSC 2001

(3) (b)' The numbers «, f and y satisfy the equations

®

4

a+pP+y=3
o+ eyt =1

_+__1_+_1;=2,
@ e

Find the values of @B+ fy+yx and afy.

Explain why e, 8 and vy are the roots of the cubic equation
x*—3x" +4x—-2=0.

0(14F1_fa,2: &T‘f’{?d‘),z— Z(Mﬁfﬁ[’rq‘y’p{)

(20T —a@peprer%)
IR
Lo P REE I
P Y
L
27 0%
oLBY

LA

27
Prove that the polynomial g (x) = 4x* —x° +3x% +2x -3 does not have an integer
root. '

e oot drvitle -7
2y Ao Shao Fhot F O,
then Py £ 91T g (4 T _
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ARz 3
b=y } b lautahons
Kpy =2 7 -
©Wh, Y are v/os/h/mC g2

| S af =4, afy =2
(i) Find the values of &, ,B and v. 2
) = Yo T4 Wm0,
Py = O
MU =S BT ES tbo}/ '
L N
At 1w -3ty Lij_,-L
_1€ — 11_
~ et <4
X g /
Zx -2
D A 4270
- ’ . T .
2t Ju—%()
D
2,
- E_‘F,]/
5
e/
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(

. (24 HS}S 2001
7X() é/nsider the equation ).3 -3x-1=0, which we denote by (*). .

G Letx= 2 where pand g are integers having no common divisors other 4

than +1 and ~1. Suppose that x is a root of the equation ar—3x+b=0,

where a and b are integers.

Explain why p{vi{@nd why g divides a. Deduce that (*) does not

N

. . _- [ -~ .
FL 5 @ oot oF R .?V\“b (LM

(%Y —S(L%b -0
v/

have a rational roG

%j —}_E' S

v g L0
@ﬁ_m}_
\_,1/

Y C )
i im(gens - \?—Ab b
drf)S - 3pqt e \ocLB 20 - - I
0ol e o YA
) " / /. tlv = g
bg * _ , |
R R I
) P(l): 1=3 -

:-; #O

7 |
.\nRW/ Bl - ;11'4-,/

W yoronal roo s,
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¢l +.3r1§£’n£ + 3rezd o S%Lfct -3v <« 3sfa -4 =0

(ii) Suppose that r, s and d are rational numbers and that Vd is irrational. 4
Assume that_ r+s«/_ \s a root of (¥).

p(resfd)

. Show that 3r%s+s°d—3s=0 and show that r— s+/d must also be a root

Deduce from this result and part (1) that no root of (*) can be expressed

in the fo@ with r, s and d rational.”

i deeld o ((ooi’ -

3

. ﬂ{%fzs +ggCL _ gsv - i

Ut

px) =x? 3N -

7
'

f»gYO'L also -  foot [(o‘[k\))/qodb BoY- &Lemewq

= (pasdd) P - %(m-ﬁ?ﬁ) -1 = 0.

+3r -r?

T - (e3-3r —1)
5(2Y1€_+§30L-%s> ?‘/
Cot %2 gl - 3 ‘: O
BLorisis o wof; WL s (M;M\ LT
rsld £ voor (w0 radiowad ro0i)

W /\V'QWWL:'

resid, (’Qﬁ, ¥ .

S M+ r—;ﬁ_& =0
a9y = ~¥ /

oy be,

- }m-l‘;»ha/( Jood g
Vs ¥ yoot. _
no  rools o be e;cw‘yyg_ wn form vES m‘
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(i) Show that one root of (*) is 2cos-79£.
IY .
(You may assume the 1dent1ty cosSG 4cos 9 3cos@)

PN

RS :O
LH v 3"1“'“:___,_w._%_l_i;,_l_m?\() :
(& Lr_C_QELWMﬁ_\K Loﬂs}e:qr t):’d
Cojji,,":,ii. 0s}§
(%)
$008°% — brosm -
9,‘( cos?%))
':'.2(_@051;—} )

= 2(4)
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_Qu. (25) HSC 2002

(5 (@ The equation 4x°~27x+k=0 has a double root. Find the possible values of k.
PX) = W3 -27%+ k. '
PrON= axt-272. =0,
7
z - ————
X = o
L .38
257
:1/3‘ :
2.
; .
(%) =0
23\3 '
HE) - a(3) 1 /
27 g i
5 + b =0,
k=427



