NAME:

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – EXT.2 MATHS

REVIEW TOPIC (SP2) THE ELLIPSE

HSC 2000 Marks

(7)(b)

In the diagram, P is an arbitrary point on the ellipse, and QPT is a tangent to the ellipse at P. The points S' and S are the foci of the ellipse, and S'' is the reflection of S across the tangent, as shown. Let the line S'Q intersect the ellipse at R.

(i) Assuming $Q \neq P$, prove that

S'Q + QS > S'R + RS.

(ii) Deduce that the shortest path from S' to S passing through a point on the tangent is that through P, having length S'P + PS.

(iii) By considering the point S", deduce that $\angle QPS' = \angle TPS$

- (3)(a) Consider the ellipse E with equation $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$.

 and let $P = (x_0, y_0)$ be an arbitrary point on E.
 - (i) Calculate the eccentricity of E.

$$e = \frac{4}{5}$$

(ii) Find the coordinates of the foci of E and the equations of the directrices of E.

$$S(4,0),S'(-4,0);x=\pm\frac{25}{4}$$

(iii) Show that the equation of the tangent at P is

$$\frac{x_0 x}{5^2} + \frac{y_0 y}{3^2} = 1.$$

(iv) Let the tangent at P meet a directrix at a point L. Show that $\angle PFL$ is a right angle where F is the corresponding focus.

(8) (a) Suppose that p and q are real numbers. Show that $pq \le \frac{p^2 + q^2}{2}$.

1

6

(b)

The ellipse E is given by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

The point $M(x_0, y_0)$ lies inside E, so that $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} < 1$.

The line *l* is given by the equation $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

(i) Using the result of part (a), or otherwise, show that the line l lies entirely outside E. That is, show that if $P(x_1, y_1)$ is any point on l, then

$$\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} > 1.$$

(ii) The chord of contact to E from any point $Q(x_2, y_2)$ outside E has equation

$$\frac{xx_2}{a^2} + \frac{yy_2}{b^2} = 1.$$

Show that M lies on the chord of contact to E from any point on l.

- (3) (a) The ellipse E: $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$ has foci S(4,0) and S'(-4,0).
 - (i) Sketch the ellipse E indicating its foci S, S ' and its directrices.

(ii) Show that the tangent at $P(x_1, y_1)$ on the ellipse E has the equation

$$9x_1x + 25y_1y = 225$$

(iii) The line joining $P(x_1, y_1)$ to $Q(x_2, y_2)$ passes through S. Show that $4(y_2 - y_1) = x_1y_2 - x_2y_1$.

(iv) It is known that $Q(x_2, y_2)$ lies on E. Show that the tangents at P and Q on the ellipse intersect on the directrix corresponding to S.

(v) Find the equation of the normal to E at P and decide under what circumstances, if any, it passes through S and S'.

Centre of Excellence in Mathematics \$201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – EXT.2 MATHS

REVIEW TOPIC (SP2)
THE ELLIPSE

C.E.M. - YEAR 12 - EXT.2 REVIEW PAPER 2 - ELLIPSE

Marks

HSC 2000

(7) (b)

In the diagram, P is an arbitrary point on the ellipse, and QPT is a tangent to the ellipse at P. The points S' and S are the foci of the ellipse, and S'' is the reflection of S across the tangent, as shown. Let the line S'Q intersect the ellipse at R.

(i) Assuming $Q \neq P$, prove that

$$S'Q + QS > S'R + RS$$
.

In 10 0RS

QS+QR7RS (A mequal-fres)

adding S'R to both sides

S'R+QS+QRZRS+S'R

S'R+QR= S'Q

· SQ+QSTRS+SR

(ii) Deduce that the shortest path from S' to S passing through a point on the tangent is that through P, having length S'P + PS.

(iii) By considering the point S", deduce that $\angle QPS' = \angle TPS$

In
$$\triangle SPZ \neq \triangle S"PZ$$
:
 $SZ = 6"Z (gruen)$
 $\angle PZS" = \angle SZP = 90° (sign)$
 $PZ = ZP (Common)$
 $\therefore XSPZ \equiv S"PZ (SAS)$

.: PS= PS" (Orresponding sides of a congress a)

SMCE S'P T3 He should distance, s'PS" is continear :. L Q PS'= LTPS (Vert opp)

- (3)(a) Consider the ellipse E with equation $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$. and let $P = (x_0, y_0)$ be an arbitrary point on E.
 - (i) Calculate the eccentricity of E.

$$q = 25(1-e^2)$$
 $\frac{9}{25} = 1-e^2$
 $e^2 = 1-\frac{9}{25}$
 $e^2 = \frac{16}{25}$
 $e = \frac{1}{5}$

 $e = \frac{4}{5}$

(ii) Find the coordinates of the foci of E and the equations of the directrices of E.

(ae,0) Alterrices
$$\frac{1}{4}$$

$$\frac{1}{4}(5\times\frac{4}{5},0)$$

$$\frac{1}{4}(\pm4,0)$$

$$\frac{1}{4}(\pm4,0)$$
Alterrices $\frac{1}{4}$

$$S(4,0),S'(-4,0); x = \pm \frac{25}{4}$$

(iii) Show that the equation of the tangent at P is

$$\frac{x_{0}x}{5^{2}} + \frac{y_{0}y}{3^{2}} = 1.$$

$$\frac{2x}{5^{2}} + \frac{y^{2}}{3^{2}} = 1$$

$$\frac{2x}{5^{2}} = -\frac{2y}{3^{2}} \frac{dy}{dy}$$

$$\frac{dy}{dy} = \frac{3x}{5^{2}} \times -\frac{32}{2y}$$

$$\frac{dy}{dy} = -\frac{3^{2}y_{0}}{5^{2}y_{0}}$$

$$\frac{y^{2}y_{0}}{5^{2}y_{0}} - 5^{2}y_{0}^{2} = -3^{2}y_{0}y_{0} + 3^{2}y_{0}^{2}$$

$$\frac{5^{2}yy_{0} + 3^{2}y_{0}x_{0}}{5^{2}x_{0}^{2}} = \frac{5^{2}y_{0}^{2} + 5^{2}y_{0}^{2}}{5^{2}x_{0}^{2}}$$

$$\frac{5^{2}yy_{0} + 3^{2}y_{0}x_{0}}{5^{2}x_{0}^{2}} = \frac{5^{2}y_{0}^{2} + 5^{2}y_{0}^{2}}{5^{2}x_{0}^{2}}$$

$$\frac{yy_{0}}{3^{2}} + \frac{y_{0}y_{0}}{5^{2}} = \frac{y_{0}^{2}}{3} + \frac{y_{0}^{2}}{5^{2}}$$

$$\frac{yy_{0}}{3^{2}} + \frac{y_{0}y_{0}}{5^{2}} = \frac{y_{0}^{2}}{3} + \frac{y_{0}^{2}}{5^{2}} = \frac{y_{0}^{2}}{3} + \frac{y_{0}^{2}}{5^{2}} = \frac{y_{0}^{2}}{3^{2}} + \frac{y_{0}$$

(iv) Let the tangent at P meet a directrix at a point L. Show that $\angle PFL$ is a right angle where F is the corresponding focus.

(8) (a) Suppose that p and q are real numbers. Show that $pq \le \frac{p^2 + q^2}{2}$ $p^2 = \{q^2 / 2p^4\}$

The ellipse E is given by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

The point $M(x_0, y_0)$ lies inside E, so that $\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} < 1$.

The line *l* is given by the equation $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

(i) Using the result of part (a), or otherwise, show that the line l lies entirely outside E. That is, show that if $P(x_1, y_1)$ is any point on l, then

Since
$$P(x_1, y_1)$$
 is any point on $e^{-\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}} > \frac{x_1 x_0^2}{a^2} + \frac{y_1 y_0^2}{b^2} = 1$

$$|= x_1 \text{ No. } y_1 y_0 = \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} + \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{b^2} > \frac{x_1^2}{b^2} > \frac{x_1^2}{a^2} + \frac{x_1^2}{b^2} > \frac{x_1^2}{b^2}$$

$$1 = \frac{\chi_{1}}{a} \cdot \frac{\lambda l_{0}}{a} + \frac{y_{1}}{b} \cdot \frac{y_{0}}{b} \leq \left(\frac{3L_{1}}{a}\right)^{2} + \left(\frac{\chi_{0}}{b}\right)^{2} + \left(\frac{y_{1}}{b}\right)^{2} + \left(\frac{y_{0}}{b}\right)^{2} \left(\cos ng + a\right)$$

$$1 \leq \frac{\chi_{1}^{2}}{a^{2}} + \frac{\chi_{0}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} + \frac{y_{0}^{2}}{b^{2}}$$

$$1 \leq \frac{1}{2} \left(\frac{\chi_{0}^{2}}{a^{2}} + \frac{y_{0}^{2}}{b^{2}}\right) + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}}\right) \leq \frac{1}{2} + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{\chi_{1}^{2}}{b^{2}}\right)$$

$$1 \leq \frac{1}{2} + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}}\right) = \frac{1}{2} + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{\chi_{1}^{2}}{b^{2}}\right)$$

$$1 \leq \frac{1}{2} + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{\chi_{1}^{2}}{b^{2}}\right)$$

$$1 \leq \frac{1}{2} + \frac{1}{2} \left(\frac{\chi_{1}^{2}}{a^{2}} + \frac{\chi_{1}^{2}}{b^{2}}\right)$$

(ii) The chord of contact to E from any point $Q(x_2, y_2)$ outside E has equation

$$\frac{xx_2}{a^2} + \frac{yy_2}{b^2} = 1$$

Show that M lies on the chord of contact to E from any point on L

$$Q(X_2, g_2) \text{ it outside E}$$

$$\frac{x_2 x_0}{a^2} + \frac{y_2 y_0}{b^2} = 1$$
Which means that in (sto, yo)
is a an the life
$$\frac{x_2 x_1}{a^2} + \frac{y_2 y_0}{b^2} = 1$$

(3) (a) The ellipse E: $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$ has foci S(4,0) and S'(-4,0).

(i) Sketch the ellipse E indicating its foci S, S and its directrices.

(1) Sketch the empse
$$D$$
 indicating its foot S , D and D and D and D and D are D and D are D and D are D and D are D are D and D are D and D are D

(ii) Show that the tangent at $P(x_1, y_1)$ on the ellipse E has the equation

by inplinit differentiation

$$2x + 2y dy = 0$$

$$2x + 25y = 0$$

(iii) The line joining $P(x_1, y_1)$ to $Q(x_2, y_2)$ passes through S. Show that $4(y_2 - y_1) = x_1y_2 - x_2y_1$.

$$y-y_{1} = \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \left(x_{1}-x_{1}\right)$$

$$y_{1} - y_{1} - y_{1} - y_{1}y_{2} + y_{1}x_{1} = (y_{2}-y_{1})x_{1} - (y_{2}-y_{1})x_{1}$$

$$y_{2} - y_{2}x_{1} - y_{1}x_{2} + y_{1}x_{1} = xy_{2} - y_{2}x_{1} - y_{2}x_{1} + xx_{1}y_{1}$$

$$x_{1}y_{2} - xx_{2}y_{1} = xy_{2} - y_{1}x_{1} - y_{2}x_{2} + y_{2}x_{1}$$

$$Q(4_{1}0)$$

$$x_{1}y_{2} - xx_{2}y_{1} = 4y_{2} - y_{1}x_{1} - 0 + 0$$

$$4(y_{2}-y_{1}) = xx_{1}y_{2} - xx_{2}y_{1}$$

(iv) It is known that $Q(x_2, y_2)$ lies on E. Show that the tangents at P and Q on the ellipse intersect on the directrix corresponding to S.

And,
$$+25yy_1 = 225 \times 92$$

And, $+25yy_2 = 225 \times 9$

And, $y_2 - 9xy_2 = 225 \times 9$

And, $y_2 - 9xy_1 = 255(y_2 - 9_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - 9_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - 9_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

Ax $(x_1, y_2 - x_2, y_1) = 225(y_2 - y_1)$

(v) Find the equation of the normal to E at P and decide under what circumstances, if any, it passes through S and S.

by implied
$$\frac{3^{12}}{26}f \frac{y^2}{9} = 1$$
 $\frac{2x}{26}f \frac{2y}{9} = 0$
 $\frac{2x}{26}f \frac{2y}{9} = 0$
 $\frac{2x}{26}f \frac{2y}{9} = \frac{4y}{2x}f$
 $\frac{dy}{dx} = \frac{-9y}{25y}fangenf$
 $\frac{dy}{dx} = \frac{25y}{-9x}f$
 $\frac{y-9}{9x} = \frac{25y}{-9$