NAME :

Centre of Excellence in Mathematics

S201 / 414 GARDENERS RD. ROSEBERY 2018
WwWw. cemtuition.com.au

B D000 N=AS 0L
mWWWaNS EZ0TN

YEAR 12 - EXT.2 MATHS

REVIEW TOPIC (SP2)
THE ELLIPSE




C.EM.-YEAR 12 - EXT.2 REVIEW PAPER 2 — ELLIPSE 1

HSC 2000 Marks

(7) (b)

In the diagram, P is an arbitrary point on the ellipse, and QPT is a tangent
to the ellipse at P. The points S’ and S are the foci of the ellipse, and S~ is
the reflection of S across the tangent, as shown. Let the line S’Q intersect
the ellipse at R.

(@) Assuming Q= P, prove that

S’Q + OS> S'R + RS,
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(i)  Deduce that the shortest path from S’ to S passing through a point on
the tangent is that through P, having length S’'P + PS.

(iii) By considering the point S, deduce that ZQPS'=ZTPS
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(3)(a) Consider the ellipse £ with equation —)SC—— + 2

Ty

=1.

and let P =(x,,y,) be an arbitrary point on E.

(1) Calculate the eccentricity of E.

(S RIN

(i)  Find the coordinates of the foci of £ and the equations of the

directrices of E,

S(4,0),S’(—4,0);x=i%
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(iii)  Show that the equation of the tangent at P is

XX | oY
5"—2+%—=1.
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(iv)  Let the tangent at P meet a directrix at a point L. Show that ZPFL isa
right angle where F is the corresponding focus.
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(8)(a) Suppose that p and q are real numbers. Show that pg < —2— p 5 9 .

(b)

<

AN
N

The ellipse E is given by the equation x_z + -212- =1.
a
The point M(xy y,) lies inside E, so that = -——— + J;O <l.
a*

The line / is given by the equation };—y‘l 1.

(i) Using the result of part (a), or otherwise, show that the line ! lies
entirely outside E. That is, show that if P(x, , yl) is any point on /, then
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(ii) The chord of contact to E from any point QO(x,, y,) outside E has
equation

XXo VY2 _
——2-+'b7—1.

Show that M lies on the chord of contact to E from any point on /.
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(3) (a) The ellipse E: Gj +(§J =1 has foci S(4,0) and §'(=4,0).

(i) Sketch the ellipse F indicating its foci S, S' and its directrices.

(ii) Show that the tangent at P(x,,y,) on the ellipse £ has the equation

9xx+25y,y =225
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(iif) The line joining P(x, ) to O(x,,y,) passes through S.
Show that 4(y, =) =%y, =%, .

(iv) It is known that Q(x,,y,) lies on E. Show that the tangents at P and  on the
ellipse intersect on the directrix corresponding to S.
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(v) Find the equation of the normal to £ at P and decide under what circumstances, if
any, it passes through Sand S'".
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In the diagram, P is an arbitrary point on the ellipse, and QPT is a tangent
to the ellipse at P. The points S’ and S are the foci of the ellipse, and S” is
the reflection of S across the tangent, as shown. Let the line S’Q intersect-

YEAR 12 — EXT.Z MATHS : the ellipse at R.

© Assuming O+ P, prove that
REVIEW TOPIC (SP2) ' ' §'Q+QS>SR+RS
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(i)  Deduce that the shortest path from 5’ to S passing through a point on
the tangent is that through P, having length S°P + PS.

£pafs= SRARsL €8s/
' S hs RODp
L P IS Hhe Srfes) path

(fii) By considering the point §” , deduce that ZQPS'=£TPS
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(3)(a) Consider the ellipse E with equation -’;T+—y-z—=1. ’ 9

3

and let P =(x,,y,) be an arbitrary point on £.

@

(i

Calculate the eccentricity of E.

‘Ic'ZS(\-ﬂ’\.

wm |~

Find the coordinates of the foci of E and the equations of the
directrices of E. |

(a¢)0) i~ 8
:( : = &
Aex g )/ 5/
. 3\ ;__’i .
- —.(,‘l."f,o] X 75_

S(4,0),S'(—4,0);x=i%:5—
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(iii)  Show that the equation of the tangent at P is

2
& J:‘)o‘ 92302 =~ 3L 4 31"[02

573394' 3l = §1j°7 -f%"‘)(ﬁl

< 2
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(iv)  Let the tangent at P meet a directrix at a point L. Show that £ZPFL isa

right angle where F is the corresponding focus.
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8) (a) Supposethatp audqare real numbers Show that pqsp :.+q - B
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w 5 ) : (iii) The line joining P(x,¥) to Q(x,,,) passes through S.
(3) (2). The ellipse E: (%] +(§j =1 has foci S(4,0) and S'(—4,0). » Show that 4(y, =3, ) = %), — % -
. (i) Sketch the ellipse E indicating its foci S, S ' and its directrices j, Lj - 91' 9\
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(ii) Show that the tangent at P (xl, yl) on the ellipse E has the equation

£ Oxx+25y,y=225"
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{v) Find the equation of the normal to E at P and decide under
any, it passes through § and S

what circumstances, if

éjw@;cﬂ

)= 25 (fi—»/

[ER
@ -9 4= 25y, /4—)(,/
% = bog, -2 19

624y, = oy, y,-0
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