NAME:			

Centre of Excellence in Mathematics S201 / 414 GARDENERS RD. ROSEBERY 2018 www.cemtuition.com.au

YEAR 12 – MATHS EXT.2

REVIEW TOPIC (PAPER 1): VOL BY KNOWN X-SECTION

Received on		Check corrections on pages:
Completed on		
Checked by		

Tutor's Initials

Dated on

JAMES RUSE 2000 Q2

(a) A symmetrical pior of height 5 metres has an elliptical base with equation $\frac{x^2}{25} + \frac{y^2}{4} = 1$ and slopes to a parallel ciliptical top with equation $\frac{x^2}{9} + y^2 = 1$.

If the cross sections of the area parallel to the base are also elliptical find the volume of the pier given that the area of an ellipse with semi -major axis a and semi-minor axis b is nab.

S&G 2001 Q5

c)

The base of the solid K shown in the diagram is the region in the xy plane enclosed between the semi-ellipse $4x^2 + 9y^2 = 36$ and the y axis. Each cross section perpendicular to the x axis is an equilateral triangle.

i) Consider a slice of the solid with thickness Δx and distant xfrom the y axis. Find the area of this slice in terms of x.

2

ii) Find the volume of the solid K.

2

2

iii) Solid J has the same base as solid K but its perpendicular cross sectional slice is an isosceles right angled triangle with its hypotenuse in the xy plane.

Find the ratio of volumes of solid K to solid J.

5

SBHS 2001 Q6

(a) The base of a solid is the region enclosed by y = 2x and $y = x^2$. Cross sections taken perpendicular to the x axis are semicircles with the diameter in the base of the solid (as indicated the diameter AB of the semicircle is perpendicular to the x axis; the semicircle is perpendicular to the xy plane).

Find the volume of the solid.

SBHS 2002 Q7

Barcan sand dunes are parabolic in plan view and are triangular in cross section with the inner face having an angle of repose of $\tan^{-1}\frac{3}{4}$ to the horizontal and the outer face at $\tan^{-1}\frac{1}{6}$ to the horizontal. The figure above shows one such dune (dimensions are in metres). Calculate the volume of sand

5

ST IGNATIUS 2002 Q6

The base of a solid is a right-angled triangle on the horizontal x-y plane; bounded by the lines y = 0, x = 4 and y = x. Vertical cross-sections of the solid, parallel to the y-axis, are semicircles with their diameter on the base of the solid as shown in the diagram below. Find the volume of the solid.

SOLUTIONS

JAMES RUSE 2000 Q2

S&G 2001 Q5

(onsider the triangle above, father as a slice of the solid with Thickness Δx .

In 30 = $\frac{4}{3}$... h= $\frac{4}{3}$... Area of slice = $\frac{4}{3}$ × $\frac{2}{3}$ ×

Area of slice = $2y_{xy} \times \frac{1}{2} = y^2$.

- Volume of J

= $\frac{1}{9} \left[36x - 4x^2 \right] dx$.

= $\frac{1}{9} \left[(10x - 36) = 8 \text{ mits}^3$.

- Ratio of volumes of solution of the solid J is $8\sqrt{3} = 8$.

= $\sqrt{3} : 1$ (2 marks)

SBHS 2001 Q6

A = trea of sensi-circle =
$$\frac{\pi}{2}(x-\frac{x^2}{2})^2$$

Thickness of solid δx .

Vol. of element = $\delta V = A\delta x$

= $\frac{\pi}{2}(x-\frac{x^2}{2})^2 \delta x$

Total Volume = $\lim_{\delta x \to 0} \sum_{k=0}^{\infty} \frac{\pi}{2}(x-\frac{x^2}{2})^2 \delta x$

= $\frac{\pi}{2} \int_{0}^{\infty} (x-\frac{x^2}{2})^2 dx$

= $\frac{\pi}{2} \int_{0}^{\infty} (x-\frac{x^2}{2})^2 dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

= $\frac{\pi}{2} \left[\frac{x^2}{2} - \frac{x^2}{2} + \frac{x^2}{2} \right] dx$

SBHS 2002 Q7

So the volume of the Barcan dune is 3300 cubic units

ST IGNATIUS 2002 Q6

