

2013

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- • Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I Pages 2-7

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 8-15

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The polynomial $P(x) = x^3 - 4x^2 - 6x + k$ has a factor x - 2.

What is the value of k?

- (A) 2
- (B) 12
- (C) 20
- (D) 36
- 2 The diagram shows the graph y = f(x).

Which diagram shows the graph $y = f^{-1}(x)$?

(A)

(B

(C)

(D)

3 The points A, B and C lie on a circle with centre O, as shown in the diagram.

The size of $\angle AOC$ is $\frac{3\pi}{5}$ radians.

NOT TO SCALE

What is the size of $\angle ABC$ in radians?

- $(A) \quad \frac{3\pi}{10}$
- (B) $\frac{2\pi}{5}$
- (C) $\frac{7\pi}{10}$
- (D) $\frac{4\pi}{5}$

4 Which diagram best represents the graph $y = x (1-x)^3 (3-x)^2$?

5 Which integral is obtained when the substitution u = 1 + 2x is applied to $\int x\sqrt{1 + 2x} \, dx$?

(A)
$$\frac{1}{4}\int (u-1)\sqrt{u}\,du$$

(B)
$$\frac{1}{2}\int (u-1)\sqrt{u}\,du$$

(C)
$$\int (u-1)\sqrt{u}\ du$$

(D)
$$2\int (u-1)\sqrt{u}\ du$$

6 Let $|a| \le 1$. What is the general solution of $\sin 2x = a$?

(A)
$$x = n\pi + (-1)^n \frac{\sin^{-1} a}{2}$$
, *n* is an integer

(B)
$$x = \frac{n\pi + (-1)^n \sin^{-1} a}{2}$$
, *n* is an integer

(C)
$$x = 2n\pi \pm \frac{\sin^{-1} a}{2}$$
, *n* is an integer

(D)
$$x = \frac{2n\pi \pm \sin^{-1} a}{2}$$
, *n* is an integer

7 A family of eight is seated randomly around a circular table.

What is the probability that the two youngest members of the family sit together?

- (A) $\frac{6!2!}{7!}$
- (B) $\frac{6!}{7!2!}$
- (C) $\frac{612!}{8!}$
- (D) $\frac{6!}{8!2!}$
- 8 The angle θ satisfies $\sin \theta = \frac{5}{13}$ and $\frac{\pi}{2} < \theta < \pi$.

What is the value of $\sin 2\theta$?

- (A) $\frac{10}{13}$
- (B) $-\frac{10}{13}$
- (C) $\frac{120}{169}$
- (D) $-\frac{120}{169}$

9 The diagram shows the graph of a function.

Which function does the graph represent?

- $(A) \quad y = \cos^{-1} x$
- $(B) \quad y = \frac{\pi}{2} + \sin^{-1} x$
- $\hat{f} \qquad \text{(C)} \quad y = -\cos^{-1} x$
 - (D) $y = -\frac{\pi}{2} \sin^{-1} x$
- 10 Which inequality has the same solution as |x+2|+|x-3|=5?
 - $(A) \quad \frac{5}{3-x} \ge 1$
 - (B) $\frac{1}{x-3} \frac{1}{x+2} \le 0$
 - (C) $x^2 x 6 \le 0$
 - (D) $|2x-1| \ge 5$

Section II

60 marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) The polynomial equation $2x^3 3x^2 11x + 7 = 0$ has roots α , β and γ .
- (b) Find $\int \frac{1}{\sqrt{49-4x^2}} dx$.
- (c) An examination has 10 multiple-choice questions, each with 4 options. In each question, only one option is correct. For each question a student chooses one option at random.

Write an expression for the probability that the student chooses the correct option for exactly 7 questions.

- (d) Consider the function $f(x) = \frac{x}{4-x^2}$.
 - (i) Show that f'(x) > 0 for all x in the domain of f(x).
 - (ii) Sketch the graph y = f(x), showing all asymptotes.

Question 11 continues on page 9

Question 11 (continued)

(e) Find $\lim_{x \to 0} \frac{\sin \frac{x}{2}}{3x}$

1

(f) Use the substitution $u = e^{3x}$ to evaluate $\int_0^{\frac{1}{3}} \frac{e^{3x}}{e^{6x} + 1} dx$.

3

g) Differentiate $x^2 \sin^{-1} 5x$.

2

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Write $\sqrt{3}\cos x - \sin x$ in the form $2\cos(x+\alpha)$, where $0 < \alpha < \frac{\pi}{2}$.

1

(ii) Hence, or otherwise, solve $\sqrt{3}\cos x = 1 + \sin x$, where $0 < x < 2\pi$.

(b) The region bounded by the graph $y = 3 \sin \frac{x}{2}$ and the x-axis between x = 0 and $x = \frac{3\pi}{2}$ is rotated about the x-axis to form a solid.

Find the exact volume of the solid.

(c) A cup of coffee with an initial temperature of 80°C is placed in a room with a constant temperature of 22°C.

The temperature, $T^{\circ}C$, of the coffee after t minutes is given by

$$T = A + Be^{-kt},$$

where A, B and k are positive constants. The temperature of the coffee drops to $60^{\circ}\mathrm{C}$ after 10 minutes.

How long does it take for the temperature of the coffee to drop to 40°C? Give your answer to the nearest minute.

Question 12 continues on page 11

Question 12 (continued)

(d) The point $P(t, t^2 + 3)$ lies on the curve $y = x^2 + 3$. The line ℓ has equation y = 2x - 1. The perpendicular distance from P to the line ℓ is D(t).

(i) Show that
$$D(t) = \frac{t^2 - 2t + 4}{\sqrt{5}}$$
.

2

(ii) Find the value of t when P is closest to ℓ .

1

(iii) Show that, when P is closest to ℓ , the tangent to the curve at P is parallel to ℓ .

(e) A particle moves along a straight line. The displacement of the particle from the origin is x, and its velocity is v. The particle is moving so that $v^2 + 9x^2 = k$, where k is a constant.

Show that the particle moves in simple harmonic motion with period $\frac{2\pi}{3}$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) A spherical raindrop of radius r metres loses water through evaporation at a rate that depends on its surface area. The rate of change of the volume V of the raindrop is given by

$$\frac{dV}{dt} = -10^{-4}A,$$

where t is time in seconds and A is the surface area of the raindrop. The surface area and the volume of the raindrop are given by $A=4\pi r^2$ and $V=\frac{4}{3}\pi r^3$ respectively.

(i) Show that $\frac{dr}{dt}$ is constant.

ely 2

- (ii) How long does it take for a raindrop of volume 10^{-6} m³ to completely evaporate?
- (b) The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$. The tangent to the parabola at P meets the x-axis at T(ap, 0). The normal to the tangent at P meets the y-axis at $N(0, 2a + ap^2)$.

The point G divides NT externally in the ratio 2:1.

(i) Show that the coordinates of G are $(2ap, -2a - ap^2)$.

2

2

(ii) Show that G lies on a parabola with the same directrix and focal length as the original parabola.

Question 13 continues on page 13

Question 13 (continued)

(c) Points A and B are located d metres apart on a horizontal plane. A projectile is fired from A towards B with initial velocity $u \text{ m s}^{-1}$ at angle α to the horizontal.

At the same time, another projectile is fired from B towards A with initial velocity w m s⁻¹ at angle β to the horizontal, as shown on the diagram.

CONTROL TO THE WAR ARE A TOWNS

The projectiles collide when they both reach their maximum height.

The equations of motion of a projectile fired from the origin with initial velocity $V \,\mathrm{m \ s^{-1}}$ at angle θ to the horizontal are

$$x = Vt \cos \theta$$
 and $y = Vt \sin \theta - \frac{g}{2}t^2$. (Do NOT prove this.)

2

1

ð

- (i) How long does the projectile fired from A take to reach its maximum height?
- (ii) Show that $u \sin \alpha = w \sin \beta$.

(iii) Show that $d = \frac{uw}{g} \sin(\alpha + \beta)$.

Question 13 continues on page 14

Question 13 (continued)

(d) The circles C_1 and C_2 touch at the point T. The points A and P are on C_1 . The line AT intersects C_2 at B. The point Q on C_2 is chosen so that BQ is parallel to PA.

3

Copy or trace the diagram into your writing booklet.

Prove that the points Q, T and P are collinear.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(i) Show that for
$$k > 0$$
, $\frac{(1-1)^2}{(k+1)^2} - \frac{1}{k} + \frac{1}{k+1} < 0$.

. 1

3

1

3

(ii) Use mathematical induction to prove that for all integers
$$n \ge 2$$
,

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}.$$

(b) (i) Write down the coefficient of
$$x^{2n}$$
 in the binomial expansion of $(1+x)^{4n}$.

(ii) Show that
$$\left(1+x^2+2x\right)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^{2n-k} (x+2)^{2n-k}$$
.

(iii) It is known that

$$x^{2n-k}(x+2)^{2n-k} = {2n-k \choose 0} 2^{2n-k} x^{2n-k} + {2n-k \choose 1} 2^{2n-k-1} x^{2n-k+1} + \dots + {2n-k \choose 2n-k} 2^0 x^{4n-2k}.$$
 (Do NOT prove this.)

Show that

$$\binom{4n}{2n} = \sum_{k=0}^{n} 2^{2n-2k} \binom{2n}{k} \binom{2n-k}{k}.$$

- (c) The equation $e^t = \frac{1}{t}$ has an approximate solution $t_0 = 0.5$.
 - (i) Use one application of Newton's method to show that $t_1 = 0.56$ is another approximate solution of $e^t = \frac{1}{t}$.
 - (ii) Hence, or otherwise, find an approximation to the value of r for which the graphs $y = e^{rx}$ and $y = \log_e x$ have a common tangent at their point of intersection.

End of paper

2013 Higher School Certificate Solutions Mathematics Extension 1

SECTION I

Summary							
1	C	4	D	7	A	9	В
2	D	5	A	8	D	10	\mathbf{C}
3	\mathbf{C}	6	В				

- 1 (C) P(2) = 0and P(2) = 8 - 16 - 12 + kthus 0 = -20 + khence k = 20.
- 2 (D) The inverse would be a reflection in the line y = x.

3 (C) $\angle ABC = \frac{1}{2} \text{reflex} \angle AOC$ $= \frac{1}{2} \left(2\pi - \frac{3\pi}{5} \right)$ $= \pi - \frac{1}{2} \times \frac{3\pi}{5}$ $= \frac{7\pi}{10}.$

- 4 (D) There is a single root at x=0 (cuts x-axis),
 - a triple root at x=1 (horizontal point of inflection on x-axis),
 - a double root at x = 3 (touches x-axis),
 - the leading team is -x⁶, which has a negative coefficient, when x→±∞, y→-∞.

The only match is (D).

- 5 (A) $u = 1 + 2x \quad \therefore \quad x = \frac{1}{2}(u 1)$ $\frac{du}{dx} = 2 \quad \therefore \quad dx = \frac{1}{2}du$ $\int x\sqrt{1 + 2x} \, dx = \int \frac{1}{2}(u 1)\sqrt{u} \, \frac{1}{2}du$ $= \frac{1}{4}\int (u 1)\sqrt{u} \, du$
- 6 (B) $2x = n\pi + (-1)^n \sin^{-1}(a)$ $x = \frac{n\pi + (-1)^n \sin^{-1}(a)}{2}.$
- 7 (A) 8 elements can be arranged in 7! ways around a circle. The 2 youngest can be arranged in 2! ways. The remaining 6 members can be arranged in 6! ways.

 The result is $\frac{6!2!}{7!}$.

8 (D) θ is in the second quadrant $\cos \theta < 0$.

 $\sin \theta = \frac{5}{13}$ and $\cos \theta = -\frac{12}{13}$ $\sin 2\theta = 2\sin \theta \cos \theta$

$$=2 \times \frac{5}{13} \times -\frac{12}{13}$$
$$=-\frac{120}{169}.$$

9 (B) The graph of $y = \sin^{-1} x$ is shown below:

Therefore the required function is $y = \sin^{-1} x$ translated in the positive

y-direction by $\frac{\pi}{2}$ units.

Thus
$$y = \frac{\pi}{2} + \sin^{-1} x$$
.

10 (C) For the equation |x+2|+|x-3|=5, we need to consider three regions: $x<-2, -2 \le x \le 3$ and x>3

If
$$x < -2$$
, $-(x+2)-(x-3) = 5$
 $-2x = 4$
 $x = -2$

If
$$-2 \le x \le 3$$
, $(x+2)-(x-3)=5$
 $5=5$

therefore always true for $-2 \le x \le 3$

If
$$x > 3$$
, $(x+2)+(x-3)=5$
 $2x=6$
 $x=3$

Thus |x+2|+|x-3|=5 has the solution: -2 \le x \le 3 and this is the same as

that has solution $-2 \le x \le 3$.

SECTION II

Question 11

(a)
$$a = 2, b = -3, c = -11, d = 7$$
$$\alpha \beta \gamma = -\frac{d}{a}$$
$$= -\frac{7}{2}$$

Page 56

(b) Method 1: Let u = 2x

Let
$$u = 2x$$

$$\frac{du}{dx} = 2 \qquad \therefore dx = \frac{1}{2}du$$

$$\int \frac{1}{\sqrt{49 - 4x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{7^2 - u^2}} du$$

$$= \frac{1}{2} \sin^{-1} \frac{u}{7} + C$$

$$= \frac{1}{2} \sin^{-1} \frac{2x}{7} + C.$$
[alternatively $-\frac{1}{2} \cos^{-1} \frac{2x}{7} + C_1$]

OR

Method 2:

From the table of Standard Integrals:

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{49 - 4x^2}} dx = \int \frac{1}{\sqrt{4\left(\frac{49}{4} - x^2\right)}} dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{49}{4} - x^2\right)}} dx$$

$$= \frac{1}{2} \sin^{-1} \frac{x}{2} + C$$

$$= \frac{1}{2} \sin^{-1} \frac{2x}{7} + C.$$

(c) Binomial distribution with 10 trials and $p = \frac{1}{4}$ $P(7 \text{ correct}) = {}^{10}C_7 \left(\frac{1}{4}\right)^7 \left(\frac{3}{4}\right)^3$ $= \frac{405}{131072}$ $\approx 0.0031.$

(d) (i) $f(x) = \frac{x}{4-x^2}$ $f'(x) = \frac{1 \cdot (4-x^2) - x(-2x)}{(4-x^2)^2}$ $= \frac{4-x^2 + 2x^2}{(4-x^2)^2}$ $= \frac{4+x^2}{(4-x^2)^2}$ > 0since $4+x^2 > 0$ and $(4-x^2)^2 > 0$.

(ii) Vertical asymptotes at $x = \pm 2$ and as $x \to \infty$, $y \to 0^-$ as $x \to -\infty$, $y \to 0^+$ when x = 0, y = 0

(e) $\lim_{x \to \infty} \frac{\sin \frac{x}{2}}{3x} = \frac{1}{6} \lim_{x \to \infty} \frac{\sin \frac{x}{2}}{\frac{x}{2}}$ $= \frac{1}{6} \times 1$ $= \frac{1}{6}.$

(f) For $u = e^{3x}$ $\frac{du}{dx} = 3e^{3x} \quad \therefore \frac{1}{3}du = e^{3x}dx$ When $x = \frac{1}{3}$, u = e $x = 0, \quad u = 1$ $\int_{0}^{\frac{1}{3}} \frac{e^{3x}}{e^{6x} + 1} dx = \frac{1}{3} \int_{1}^{e} \frac{1}{u^{2} + 1} du$ $= \frac{1}{3} \left[\tan^{-1} u \right]_{1}^{e}$ $= \frac{1}{3} \left[\tan^{-1} e - \tan^{-1} 1 \right]$ $= \frac{1}{3} \left(\tan^{-1} e - \frac{\pi}{4} \right).$

(g) Let $y = \sin^{-1} 5x$ $= \sin^{-1} u$ where u = 5xthen $\frac{dy}{du} = \frac{1}{\sqrt{1 - u^2}}$ and $\frac{du}{dx} = 5$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= \frac{1}{\sqrt{1 - u^2}} \times 5$ $= \frac{5}{\sqrt{1 - 25x^2}}$ $\frac{d}{dx} (x^2 \sin^{-1} 5x) = 2x \sin^{-1} 5x + x^2 \cdot \frac{5}{\sqrt{1 - 25x^2}}$ $= 2x \sin^{-1} 5x + \frac{5x^2}{\sqrt{1 - 25x^2}}$.

Question 12

(a) (i) $\sqrt{3}\cos x - \sin x = 2\cos(x + \alpha)$ $= 2\cos x \cos \alpha - 2\sin x \cos \alpha$ Equating coefficients of $\cos x$:

$$\cos \alpha = \frac{\sqrt{3}}{2}$$
 and $\sin \alpha = \frac{1}{2}$

 $\therefore \alpha = \frac{\pi}{6}$ $\therefore \sqrt{3} \cos x - \sin x = 2 \cos \left(x + \frac{\pi}{6} \right)$

(ii) $\sqrt{3}\cos x = 1 + \sin x$ $\sqrt{3}\cos x - \sin x = 1$ $2\cos\left(x + \frac{\pi}{6}\right) = 1$ $\cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ $x + \frac{\pi}{6} = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}$ $x = \frac{\pi}{6} \text{ or } \frac{3\pi}{2}.$

(b) $V = \pi \int_{a}^{b} y^{2} dx$ where $y^{2} = 9 \sin^{2} \frac{x}{2}$ Consider: $\cos 2\theta = 1 - 2 \sin^{2} \theta$ $\sin^{2} \theta = \frac{1}{2} (1 - \cos 2\theta)$ $\sin^{2} \frac{x}{2} = \frac{1}{2} (1 - \cos x)$ $\frac{y^{2}}{9} = \frac{1}{2} (1 - \cos x)$ $V = \frac{9}{2} \pi \int_{0}^{\frac{3\pi}{2}} (1 - \cos x) dx$ $= \frac{9\pi}{2} [x - \sin x]_{0}^{\frac{3\pi}{2}}$ $= \frac{9\pi}{2} (\frac{3\pi}{2} - (-1) - (0 - 0))$ $= \frac{9\pi}{2} (\frac{3\pi}{2} + 1)$ units³.

(c) $T = A + Be^{-kt}$ A = 22 (ambient temperature is 22°C) $\therefore T = 22 + Be^{-kt}$ When t = 0, T = 80 $80 = 22 + Be^{0}$ $\therefore B = 58$

(d) (i)
$$D(t) = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$
 where the line is $2x - y - 1 = 0$ and the point is $(t, t^2 + 3)$

$$D(t) = \frac{|2t - 1(t^2 + 3) - 1|}{\sqrt{2^2 + 1^2}}$$

$$= \frac{|-t^2 + 2t - 4|}{\sqrt{5}}$$

$$= \frac{t^2 - 2t + 4}{\sqrt{5}}$$

(ii) Method 1:

$$\frac{dD}{dt} = \frac{2t-2}{\sqrt{5}}$$

$$= 0 \text{ when } t = 1$$

$$\frac{d^2D}{dt^2} = \frac{2}{\sqrt{5}}$$

since $t^2 - 2t + 4 = (t-1)^2 + 3$

 \therefore it is a minimum when t=1.

OR

Method 2:

D(t) is minimised

when $t^2 - 2t + 4$ is minimised. This is a concave up quadratic .. minimum occurs when

$$t = \frac{-b}{2a}$$

$$= \frac{-(-2)}{2(1)}$$

$$= 1$$

 \therefore it is a minimum when t=1.

(iii) When t=1, P=(1,4). Gradient of tangent:

$$m = \frac{dy}{dx}$$

$$= 2x$$

$$= 2(1)$$

Gradient of line y = 2x - 1 is 2. \therefore the tangent is parallel to ℓ .

(c)
$$v^{2} + 9x^{2} = k$$

$$v^{2} = k - 9x^{2}$$
Using $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^{2} \right)$, we have
$$\ddot{x} = \frac{1}{2} \frac{d}{dx} \left(k - 9x^{2} \right)$$

$$= \frac{1}{2} \left(-18x \right)$$

$$\ddot{x} = -9x$$
This is of the form $\ddot{x} = -n^{2}x$.
$$\therefore \text{ this is SHM with } n = 3$$
.

Period = $\frac{2\pi}{n}$

2013 Higher School Certificate

Ouestion 13

(a) (i)
$$V = \frac{4}{3}\pi r^{3}$$

$$\frac{dV}{dr} = 4\pi r^{2}$$

$$= A$$

$$\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt} \quad \text{but } \frac{dV}{dt} = -10^{-4} A$$

$$= \frac{1}{A} \times \left(-10^{-4} A\right)$$

$$= -10^{-4}$$
Thus $\frac{dr}{dt}$ is constant.

(ii)
$$\frac{dr}{dt} = -10^{-4}$$

$$r = -10^{-4}t + C \qquad \text{①}$$
when $t = 0$ $V = 10^{-6}$

$$V = \frac{4}{3}\pi r^{3}$$

$$10^{-6} = \frac{4}{3}\pi r^{3}$$

$$r^{3} = \frac{3\times10^{-6}}{4\pi}$$

$$r = \sqrt[3]{\frac{3\times10^{-6}}{4\pi}}$$

Substitute into ① to find C:

$$C = \sqrt[3]{\frac{3 \times 10^{-6}}{4\pi}}$$

$$\therefore r = -10^{-4} t + \sqrt[3]{\frac{3 \times 10^{-6}}{4\pi}}$$

When r = 0

$$0 = -10^{-4}t + \sqrt[3]{\frac{3 \times 10^{-6}}{4\pi}}$$

$$10^{-4}t = \sqrt[3]{\frac{3 \times 10^{-6}}{4\pi}}$$

$$t = \sqrt[3]{\frac{3 \times 10^{-6}}{4\pi}}$$

$$= 62.03504909...$$

= 62 seconds (nearest second).

(i) For the point G: $x = \frac{nx_1 + mx_2}{m+n}, y = \frac{ny_1 + my_2}{m+n}$ where m=2, n=-1 $x = \frac{-1 \times 0 + 2 \times ap}{-1 + 2}$ $y = \frac{-1 \times (2a + ap^2) + 2 \times 0}{-1 + 2}$ $=\frac{-2a-ap^2}{1}$ $y = -2a - ap^2$

> (ii) x = 2ap $p = \frac{x}{2a}$ $y = -2a - ap^2$ $=-2a-a\left(\frac{x}{2a}\right)^2$ $=-2a-a\times\frac{x^2}{4a^2}$ $=-2a-\frac{x^2}{4a}$ $4ay = -8a^2 - x^2$ $x^2 = -4ay - 8a^2$ $x^2 = -4a(y+2a)$ By inspection: It is an inverted parabola. focal length = avertex is (0,-2a)directrix is y = -2a + a

 $\therefore G$ is $(2ap, -2a-ap^2)$

vertex is
$$(0,-2a)$$

directrix is $y = -2a + a$
i.e. $y = -a$

Thus the directrix and focal length are the same as the original parabola.

$$y = ut \sin \alpha - \frac{g}{2}t^2$$
Maximum height is when $\dot{y} = 0$

$$y = ut \sin \alpha - \frac{g}{2}t^2$$

$$\dot{y} = u \sin \alpha - gt$$

$$0 = u \sin \alpha - gt$$

$$gt = u \sin \alpha$$

$$t = \frac{u \sin \alpha}{g}$$

(ii) The equations of motion from B are: $x = wt \cos \beta$

$$y = wt \sin \beta - \frac{g}{2}t^2$$

Its maximum height would be reached when

When both projectiles are at their maximum

$$\frac{u\sin\alpha}{g} = \frac{w\sin\beta}{g}$$
$$u\sin\alpha = w\sin\beta.$$

The combined distance would be: $d = ut \cos \alpha + wt \cos \beta$

$$= u \left(\frac{u \sin \alpha}{g} \right) \cos \alpha + w \left(\frac{w \sin \beta}{g} \right) \cos \beta$$

$$= \frac{u \cos \alpha u \sin \alpha}{g} + \frac{w \cos \beta w \sin \beta}{g}$$

$$d = \frac{u^2 \sin \alpha \cos \alpha}{g} + \frac{w^2 \sin \beta \cos \beta}{g}$$

From part (ii), we have $u \sin \alpha = w \sin \beta$ $\therefore d = \frac{u \cos \alpha . w \sin \beta}{\sigma} + \frac{w \cos \beta . u \sin \alpha}{\sigma}$

$$\therefore d = \frac{uw}{g} + \frac{uw}{g}$$

$$= \frac{uw}{g} (\cos \alpha \sin \beta + \cos \beta \sin \alpha)$$

$$= \frac{uw}{g} \sin (\alpha + \beta).$$

(i) (d)

Draw the tangent UTS through T. It will be a tangent to both circles. Join TO and TP. Aim: To prove QTP is a straight angle. $\angle TAP = \angle STP$ (alt. segment theorem) $\angle QBT = \angle UTQ$ (alt. segment theorem) $\angle TAP = \angle QBT$ (alt. $\angle s$ in || lines) ∴ ∠STP=∠UTO Because $\angle STP$ and $\angle PTU$ are supplementary adjacent angles, ∴ ∠UTO and ∠PTU are supplementary adjacent angles. $\therefore Q, T, P$ are collinear.

Ouestion 14

(a) (i) $\frac{1}{(k+1)^2} - \frac{1}{k} + \frac{1}{k+1}$ $=\frac{k-(k+1)^2+k(k+1)}{k(k+1)^2}$ $=\frac{k-(k^2+2k+1)+k^2+k}{k(k+1)^2}$ <0 (since k>0)

(ii) For
$$n=2$$
:
LHS = $\frac{1}{1^2} + \frac{1}{2^2} = 1\frac{1}{4}$
RHS = $2 - \frac{1}{2} = 1\frac{1}{2}$
 \therefore True for $n = 2$, since $1\frac{1}{4} < 1\frac{1}{2}$.
Let $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2} < 2 - \frac{1}{k}$ \oplus be true for some integer, k.

Then for n=k+1 we need to prove that: $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} < 2 - \frac{1}{k+1}$ $LHS = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2}$ $<2-\frac{1}{k}+\frac{1}{(k+1)^2}$ from ① but $\frac{1}{(k+1)^2} - \frac{1}{k} < -\frac{1}{k+1}$ from part (i)

So
$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} < 2 - \frac{1}{k+1}$$

< RHS

.. by mathematical induction $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$

is true for all integers $n \ge 2$.

(b) (i)
$$(1+x)^{4n} = \sum_{r=0}^{4n} {4n \choose r} 1^{4n-r} x^r$$
$$= \sum_{r=0}^{4n} {4n \choose r} x^r$$

2013 Higher School Certin, ...e

Hence coefficient of x^{2n} is $\binom{4n}{2n}$

(ii)
$$(1+x^2+2x)^{2n} = (1+(x^2+2x))^{2n}$$

$$= \sum_{k=0}^{2n} {2n \choose k} 1^k (x^2+2x)^{2n-k}$$

$$= \sum_{k=0}^{2n} {2n \choose k} (x(x+2))^{2n-k}$$

$$= \sum_{k=0}^{2n} {2n \choose k} x^{2n-k} (x+2)^{2n-k}$$

(iii)
$$(1+x^2+2x)^{2n} = ((1+x)^2)^{2n}$$

 $= (1+x)^{4n}$
Thus, from part (ii):
 $(1+x)^{4n} = \sum_{k=0}^{2n} {2n \choose k} x^{2n-k} (x+2)^{2n-k}$ ①

From part (i), $\binom{4n}{2n}$ is the coefficient

of x^{2n} in the expansion of

$$(1+x)^{4n} = \sum_{k=0}^{2n} {2n \choose k} x^{2n-k} (x+2)^{2n-k}.$$

Also, it is given that:

$$x^{2n-k} \left(x+2\right)^{2n-k} = \sum_{r=0}^{2n-k} {2n-k \choose r} 2^{2n-k-r} x^{2n-k+r}$$

and the term in x^{2n} occurs when r = k, with coefficient $\binom{2n-k}{k} 2^{2n-2k}$

Therefore, the coefficient of x^{2n} in the expansion of:

$$\sum_{k=0}^{2n} {2n \choose k} x^{2n-k} (x+2)^{2n-k}$$
 is:
$$\sum_{k=0}^{2n} {2n \choose k} {2n-k \choose k} 2^{2n-2k}$$

And from \oplus above, this equals $\binom{4n}{2n}$

$$\therefore \binom{4n}{2n} = \sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{k} 2^{2n-2k}$$

$$= \sum_{k=0}^{n} 2^{2n-2k} \binom{2n}{k} \binom{2n-k}{k}.$$

(c) (i)
$$e^{t} = \frac{1}{t}$$

Let $f(t) = e^{t} - \frac{1}{t}$
 $= e^{t} - t^{-1}$

$$f'(t) = e^t + t^{-2}$$
$$= e^t - \frac{1}{2}$$

$$t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)}$$

$$t_1 = 0.5 - \frac{f(0.5)}{f'(0.5)}$$

$$= 0.5 - \frac{e^{0.5} - 2}{e^{0.5} + 4}$$

$$= 0.5621873...$$

$$= 0.56 \quad (2 \text{ dp}).$$

2013

(ii) Let
$$f(x) = e^{rx}$$
 and $g(x) = \ln x$

$$f'(x) = re^{rx}$$
 $g'(x) = \frac{1}{x}$

Since the tangents are equal:

$$re^{rx} = \frac{1}{x}$$

$$e^{rx} = \frac{1}{rx} \quad \text{let } t = rx$$

$$e^{t} = \frac{1}{t}$$

From part (i), this has a solution when $t \approx 0.56$.

At the intersection:

$$e^{rx} = \ln x$$
 but $t = rx \approx 0.56$
 $e^{0.56} = \ln x$
 $x = e^{t^{0.56}}$
 $= 5.75847395...$
 $rx = 0.56$
 $r = \frac{0.56}{x}$
 $= 0.097247987...$
 ≈ 0.1 (1 dec. pl.).

End of Mathematics Extension 1 solutions