

HIGHER SCHOOL CERTIFICATE EXAMINATION

1999 MATHEMATICS 2/3 UNIT (COMMON)

Time allowed—Three hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1 Use a SEPARATE Writing Booklet.

Marks

- (a) The points A and B have coordinates (3, -4) and (7, 2) respectively. Find the coordinates of the midpoint of AB.
- 2

(b) Find the value of e^3 , correct to three significant figures.

2

(c) Solve $3-2x \ge 7$.

2

(d) Solve the simultaneous equations

2

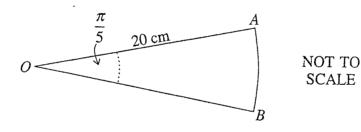
$$x + y = 1$$

$$2x - y = 5.$$

(e) Find integers a and b such that $(5 - \sqrt{2})^2 = a + b\sqrt{2}$.

2

(f)



2

In the diagram, AB is an arc of a circle with centre O. The radius OA is 20 cm. The angle AOB is $\frac{\pi}{5}$ radians. Find the area of the sector AOB.

and the standard and

(a) Find:

4

8

(i)
$$\int \left(\frac{1}{x^2} + \frac{1}{x}\right) dx$$

(ii)
$$\int \cos(2x+1) dx.$$

(b) B(3,5) NOT TO SCALE A(-2,0) O D

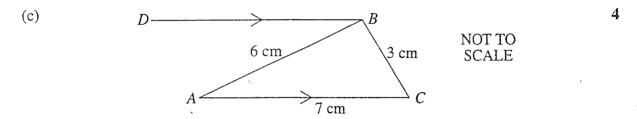
The diagram shows the points A(-2, 0), B(3, 5) and the point C which lies on the x axis. The point D also lies on the x axis such that BD is perpendicular to AC.

- (i) Show that the gradient of AB is 1.
- (ii) Find the equation of the line AB.
- (iii) What is the size of $\angle BAC$?
- (iv) The length of BC is 13 units. Find the length of DC.
- (v) Calculate the area of $\triangle ABC$.
- (vi) Calculate the size of $\angle ABC$, to the nearest degree.

(a) Differentiate the following functions:

4

- (i) $x \tan x$
- (ii) $\frac{e^x}{1+x}$
- (b) Find the equation of the normal to the curve $y = \sqrt{x+2}$ at the point (7, 3).



In the diagram, AC is parallel to DB, AB is 6 cm, BC is 3 cm and AC is 7 cm.

- (i) Use the cosine rule to find the size of $\angle ACB$, to the nearest degree.
- (ii) Hence find the size of $\angle DBC$, giving reasons for your answer.

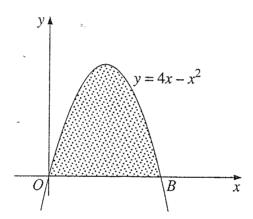
QUESTION 4 Use a SEPARATE Writing Booklet.

Marks

5

- (a) An infinite geometric series has a first term of 8 and a limiting sum of 12. 2 Calculate the common ratio.
- (b) A market gardener plants cabbages in rows. The first row has 35 cabbages. The second row has 39 cabbages. Each succeeding row has 4 more cabbages than the previous row.
 - (i) Calculate the number of cabbages in the 12th row.
 - (ii) Which row would be the first to contain more than 200 cabbages?
 - (iii) The farmer plants only 945 cabbages. How many rows are needed?

(c)



The diagram shows the graph of the function $y = 4x - x^2$.

- (i) Find the x coordinate of the point B where the curve crosses the positive x axis.
- (ii) Find the area of the shaded region contained by the curve $y = 4x x^2$ and the x axis.
- (iii) Write down a pair of inequalities that specify the shaded region.

(a) Consider the curve given by $y = x^3 - 6x^2 + 9x + 1$.

8

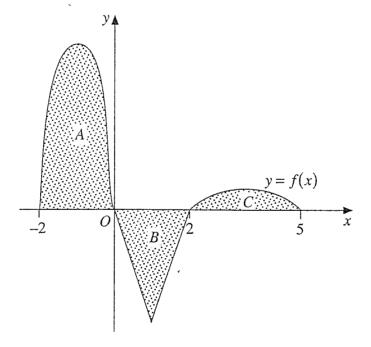
- (i) Find $\frac{dy}{dx}$.
- (ii) Find the coordinates of the two stationary points.
- (iii) Determine the nature of the stationary points.
- (iv) Sketch the curve for $x \ge 0$.
- (b) Let $\log_a 2 = x$ and $\log_a 3 = y$.

Find an expression for $\log_a 12$ in terms of x and y.

2

2

(c)



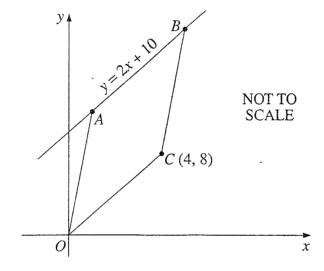
The graph of the function f is shown in the diagram. The shaded areas are bounded by y = f(x) and the x axis. The shaded area A is 8 square units, the shaded area B is 3 square units and the shaded area C is 1 square unit.

Evaluate
$$\int_{-2}^{5} f(x) dx$$
.

- (a) The mass M kg of a radioactive substance present after t years is given by $M = 10e^{-kt}$, where k is a positive constant. After 100 years the mass has reduced to 5 kg.
- 7

- (i) What was the initial mass?
- (ii) Find the value of k.
- (iii) What amount of the radioactive substance would remain after a period of 1000 years?
- (iv) How long would it take for the initial mass to reduce to 8 kg?

(b)



5

The equation of AB is y = 2x + 10. The point C is (4, 8).

Copy or trace the diagram into your Writing Booklet.

- (i) Show that OC and AB are parallel.
- (ii) State why $\angle ABO = \angle BOC$.
- (iii) The line *OB* divides the quadrilateral *OABC* into two congruent triangles. Prove that *OABC* is a parallelogram.

- (a) Isabella invests P at 8% per annum compounded annually. She intends to withdraw \$3000 at the end of each of the next six years to cover school fees.
- 5

7

- (i) Write down an expression for the amount A_1 remaining in the account following the withdrawal of the first \$3000.
- (ii) Find an expression for the amount A_2 remaining in the account after the second withdrawal.
- (iii) Calculate the amount P that Isabella needs to invest if the account balance is to be 0 at the end of six years.
- (b) A particle P is moving along the x axis. Its position at time t seconds is given by

$$x = 2\sin t - t, \quad t \ge 0.$$

- (i) Find an expression for the velocity of the particle.
- (ii) In what direction is the particle moving at t = 0?
- (iii) Determine when the particle first comes to rest.
- (iv) When is the acceleration negative for $0 \le t \le 2\pi$?
- (v) Calculate the total distance travelled by the particle in the first π seconds.

QUESTION 8 Use a SEPARATE Writing Booklet.

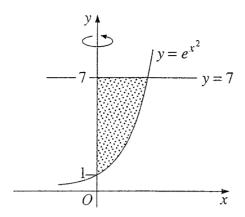
Marks

5

5

2

(a)



The shaded region bounded by $y = e^{x^2}$, y = 7 and the y axis is rotated around the y axis to form a solid.

(i) Show that the volume of the solid is given by $V = \pi \int_{1}^{7} \log_{e} y \, dy$.

(ii) Copy and complete the table. Give your answers correct to 3 decimal places.

у	1	4	7
$\log_e y$			

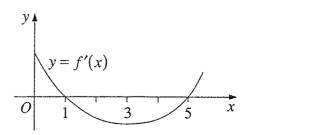
(iii) Use the trapezoidal rule with 3 function values to approximate the volume, V.

(b) A box contains five cards. Each card is labelled with a number. The numbers on the cards are 0, 3, 3, 5, 5.

Cameron draws one card at random from the box and then draws a second card at random *without* replacing the first card drawn.

- (i) What is the probability that he draws a '5', then a '3'?
- (ii) What is the probability that the sum of the two numbers drawn is at least 8?
- (iii) What is the probability that the second card drawn is labelled '3'?

(c)



The diagram shows the graph of the gradient function of the curve y = f(x).

For what value of x does f(x) have a local minimum? Justify your answer.

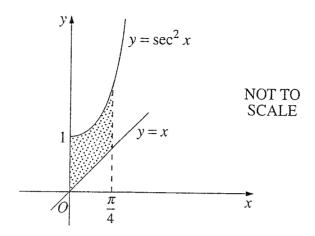
QUESTION 9 Use a SEPARATE Writing Booklet.

Marks

3

9

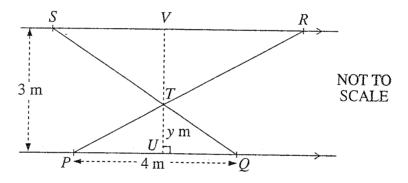
(a)



The diagram shows the graphs of the functions $y = \sec^2 x$ and y = x between x = 0 and $x = \frac{\pi}{4}$.

Calculate the area of the shaded region.

(b)

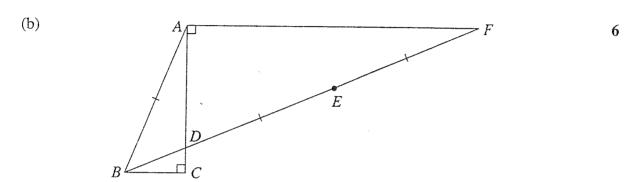


In the diagram, PQ and SR are parallel railings which are 3 metres apart. The points P and Q are fixed 4 metres apart on the lower railing. Two crossbars PR and QS intersect at T as shown in the diagram. The line through T perpendicular to PQ intersects PQ at U and SR at V. The length of UT is Y metres.

- (i) By using similar triangles, or otherwise, show that $\frac{SR}{PQ} = \frac{VT}{UT}$.
- (ii) Show that $SR = \frac{12}{y} 4$.
- (iii) Hence show that the total area A of $\triangle PTQ$ and $\triangle RTS$ is $A = 4y 12 + \frac{18}{y}$.
- (iv) Find the value of y that minimises A. Justify your answer.

(a) (i) Show that
$$x = \frac{\pi}{3}$$
 is a solution of $\sin x = \frac{1}{2} \tan x$.

- (ii) On the same set of axes, sketch the graphs of the functions $y = \sin x$ and $y = \frac{1}{2} \tan x$ for $-\pi \le x \le \pi$.
- (iii) Hence find all solutions of $\sin x = \frac{1}{2} \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
- (iv) Use your graphs to solve $\sin x \le \frac{1}{2} \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.



In the diagram, $AC \perp BC$, $AC \perp AF$ and AB = DE = EF.

Copy or trace the diagram into your Writing Booklet.

- (i) Show that $\angle DBC = \angle DFA$.
- (ii) On your diagram, mark the point G on the line AF such that $EG \parallel AC$. Show that $\triangle AGE \equiv \triangle FGE$.
- (iii) Prove that $\angle ABD = 2\angle DBC$.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

1999 Higher School Certificate Solutions

2/3 UNIT (COMMON) MATHEMATICS

QUESTION 1

(a)
$$A(3, -4)$$
, $B(7, 2)$
Midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
= $\left(\frac{3+7}{2}, \frac{-4+2}{2}\right)$
= $(5, -1)$.

(b)
$$e^3 = 20.08553692 = 20.1 (3 \text{ sig. figs}).$$

(c)
$$3-2x \ge 7$$

 $-2x \ge 4$
 $x \le -2$.

(d)
$$x+y=1 \qquad -2x-y=5 \qquad -2x-y=5 \qquad x=2.$$
① + ②:
$$3x=6 \qquad x=2.$$

Substitute in ①:

$$2 + y = 1$$
$$y = -1.$$

Solution: x = 2, y = -1.

(e)
$$(5 - \sqrt{2})^2 = a + b\sqrt{2}$$

$$(5 - \sqrt{2})^2 = (5)^2 - 2 \times 5 \times \sqrt{2} + (\sqrt{2})^2$$

$$= 25 - 10\sqrt{2} + 2$$

$$= 27 - 10\sqrt{2}.$$

$$\therefore 27 - 10\sqrt{2} = a + b\sqrt{2}$$

$$a = 27, b = -10.$$

(f) Area =
$$\frac{1}{2}r^2\theta = \frac{1}{2} \times 20^2 \times \frac{\pi}{5}$$

= $40\pi \text{ cm}^2$
= $126 \text{ cm}^2 \text{ (nearest cm}^2\text{)}.$

QUESTION 2

(a) (i)
$$\int \left(\frac{1}{x^2} + \frac{1}{x}\right) dx = \int \left(x^{-2} + \frac{1}{x}\right) dx$$
$$= \frac{x^{-1}}{-1} + \ln x + c$$
$$= \frac{-1}{x} + \ln x + c.$$

(ii)
$$\int \cos(2x+1) \ dx = \frac{1}{2} \int 2\cos(2x+1) \ dx$$
$$= \frac{1}{2} \sin(2x+1) + C.$$

(b) (i) Gradient
$$AB = \frac{5-0}{3-(-2)} = \frac{5}{5} = 1$$
.

(ii)
$$y-y_1 = m(x-x_1)$$

 $y-0 = 1[x-(-2)]$
 $y = x+2$.

(iii)
$$\tan \angle BAC = \text{gradient } AB = 1.$$

 $\therefore \angle BAC = 45^{\circ}.$

OR In
$$\triangle ABD$$
, $\angle D = 90^{\circ}$, $AD = 5$, $BD = 5$.
 $\therefore \triangle ABD$ is isosceles and right angled,
 $\therefore \angle BAC = 45^{\circ}$.

(iv)
$$BD$$
 equals 5; BC , the hypotenuse of $\triangle BDC$, equals 13; so by Pythagoras, DC equals 12.

(v) Area
$$\triangle ABC = \frac{1}{2} \times 17 \times 5$$
 sq. units = 42.5 sq. units.

(vi)
$$\cos \angle CBD = \frac{5}{13}$$

 $\therefore \angle CBD = 67^{\circ}$
 $\therefore \angle ABC = 45^{\circ} + 67^{\circ}$
 $= 112^{\circ}$.

OR
$$\frac{\sin \angle ABC}{17} = \frac{\sin \angle BAC}{13}$$
$$\sin \angle ABC = \frac{17\sin 45}{13}$$
$$= \frac{17}{13\sqrt{2}}.$$

$$\therefore$$
 $\angle ABC = 68^{\circ} \text{ or } 180^{\circ} - 68^{\circ}.$

But $\angle ABC$ is obtuse,

$$\therefore \angle ABC = 180^{\circ} - 68^{\circ}$$
$$= 112^{\circ}.$$

QUESTION 3

(a) (i)
$$\frac{d}{dx}(x \tan x) = \tan x \times 1 + x \times \sec^2 x$$
$$= \tan x + x \sec^2 x.$$

(ii)
$$\frac{d}{dx} \left(\frac{e^x}{1+x} \right) = \frac{(1+x) \times e^x - e^x \times 1}{(1+x)^2}$$
$$= \frac{e^x + xe^x - e^x}{(1+x)^2}$$
$$= \frac{xe^x}{(1+x)^2}.$$

(b)
$$y = \sqrt{x+2} = (x+2)^{\frac{1}{2}}$$
.

$$\therefore \frac{dy}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}} \times 1$$

$$= \frac{1}{2\sqrt{x+2}}$$

Let $m_1 = \text{gradient of tangent at } (7, 3)$ and $m_2 = \text{gradient of normal at } (7, 3)$.

$$m_1 = \frac{1}{2\sqrt{7+2}}$$

$$= \frac{1}{2\sqrt{9}}$$

$$= \frac{1}{6}.$$

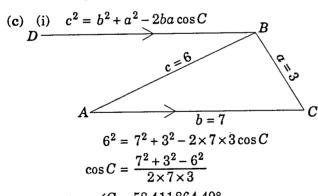
Now
$$m_2 = -\frac{1}{m_1}$$
 (for \perp lines)
= -6.

Equation of normal is $y - y_1 = m_2(x - x_1)$

$$y-3 = -6(x-7)$$

$$= -6x+42$$

$$y = -6x + 45$$
 or $6x + y - 45 = 0$.



 $\angle C = 58.41186449^{\circ}$ $= 58^{\circ} \text{ (nearest degree)}.$

That is, $\angle ACB = 58^{\circ}$.

$$\angle DBC + 58^{\circ} = 180^{\circ} \text{ (cointerior } \angle s, AC || DB \text{)}$$

 $\therefore \angle DBC = 180^{\circ} - 58^{\circ}$
 $= 122^{\circ}.$

QUESTION 4

(a)
$$a = 8$$
, $S = 12$
Now $S = \frac{a}{1-r}$, \therefore $12 = \frac{8}{1-r}$
 $12(1-r) = 8$
 $12-12r = 8$
 $-12r = -4$
 $r = \frac{-4}{-12}$
 $= \frac{1}{2}$

That is, the common ratio is $\frac{1}{3}$.

(b)
$$35$$
 $39 = 35 + 4$

This is an arithmetic sequence with a = 35, d = 4.

(i)
$$T_n = a + (n-1)d$$

 $T_{12} = 35 + 11 \times 4$
 $= 79.$

(ii)
$$T_n > 200$$
, $n = ?$
 $\therefore a + (n-1)d > 200$
 $35 + (n-1) \times 4 > 200$
 $35 + 4n - 4 > 200$
 $4n > 169$
 $n > 42\frac{1}{4}$

Since n is a whole number, the 43rd row will be the first row to contain more than 200 cabbages.

(iii)
$$S_n = 945$$
, $S_n = \frac{n}{2} [2a + (n-1)d]$

$$\therefore 945 = \frac{n}{2} [2 \times 35 + (n-1) \times 4]$$

$$= \frac{n}{2} (70 + 4n - 4)$$

$$= \frac{n}{2} (66 + 4n)$$

$$= 33n + 2n^2.$$

$$\therefore 2n^2 + 33n - 945 = 0$$
$$(2n + 63)(n - 15) = 0$$
$$\therefore n = 15 \text{ or } -315.$$

But n > 0, so n = 15.

That is, 15 rows are needed for a total of 945 cabbages.

(c) (i)
$$y = 4x - x^2$$

At B, $y = 0$, $\therefore 4x - x^2 = 0$
 $x(4-x) = 0$
 $x = 0 \text{ or } 4$.

But x = 0 is the origin, \therefore at B, x = 4.

(ii) Area =
$$\int_0^4 (4x - x^2) dx$$

= $\left[2x^2 - \frac{x^3}{3}\right]_0^4$
= $\left(2 \times 4^2 - \frac{4^3}{3}\right) - (0)$
= $\left(32 - 21\frac{1}{3}\right)$
= $10\frac{2}{3}$ square units.

(iii)
$$y \ge 0$$
, $y \le 4x - x^2$.
(N.B. $y > 0$, $y < 4x - x^2$ is also correct.)

QUESTION 5

(a)
$$y = x^3 - 6x^2 + 9x + 1$$

(i)
$$\frac{dy}{dx} = 3x^2 - 12x + 9$$
$$= 3(x^2 - 4x + 3).$$

(ii) Stationary points when
$$\frac{dy}{dx} = 0$$
.

That is,
$$(x^2-4x+3)=0$$

 $(x-3)(x-1)=0$.

$$\therefore x = 3 \text{ or } x = 1.$$

Stationary points are (3, 1) and (1, 5).

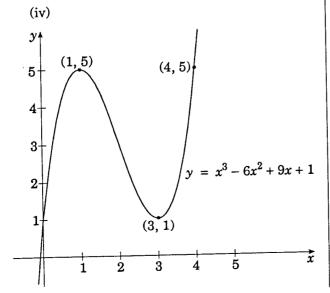
(iii)
$$\frac{d^2y}{dx^2} = 6x - 12$$

When $x = 1$, $\frac{d^2y}{dx^2} = 6 - 12 < 0$,

:. the curve is concave down and (1, 5) is a relative maximum.

When
$$x = 3$$
, $\frac{d^2y}{dx^2} = 18 - 12 > 0$,

: the curve is concave up and (3, 1) is a relative minimum.



(b)
$$\log_a 2 = x$$
, $\log_a 3 = y$
 $\log_a 12 = \log_a 4 \times 3$
 $= \log_a 4 + \log_a 3$
 $= \log_a 2^2 + \log_a 3$
 $= 2\log_a 2 + \log_a 3$
 $= 2x + y$.

There are other possible answers (for example, $x \log_2 12$), but this is the simplest and most obvious.

(c)
$$\int_{-2}^{5} f(x) dx = 8 - 3 + 1$$
$$= 6.$$

QUESTION 6

- (a) $M = 10e^{-kt}$
 - (i) Initial mass occurs when t = 0, that is, $M = 10e^{-k \times 0}$ = 10.

So the initial mass is 10 kg.

(ii)
$$t = 100$$
, $M = 5$
 $M = 10e^{-kt}$
 $\therefore 5 = 10e^{-100k}$
 $e^{-100k} = 0.5$
 $\ln e^{-100k} = \ln 0.5$
 $-100k = \ln 0.5$
 $k = \frac{\ln 0.5}{-100}$
 $= 6.931471806 \times 10^{-3}$
 $= 0.00693$ (3 sig. figs).

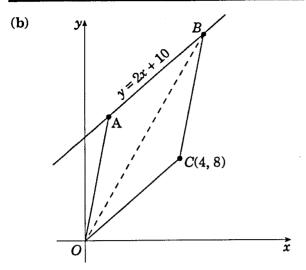
(iii)
$$t = 1000$$
, $M = ?$
 $M = 10e^{-k \times 1000}$
 $= 0.009765625$
 $= 0.009766 \text{ kg (4 sig. figs)}$
 $= 9.766 \text{ g.}$

OR Since the mass halves in 100 years, it will halve ten times in 1000 years.

$$\therefore$$
 Mass = $\frac{10}{2^{10}}$ = 0.009 766 kg.

(iv)
$$t = ?$$
, $M = 8$
 $8 = 10e^{-kt}$
 $0.8 = e^{-kt}$
 $\ln 0.8 = \ln e^{-kt}$
 $\ln 0.8 = -kt$
 $t = \frac{\ln 0.8}{-k}$
 $= \frac{\ln 0.8 \times 100}{\ln 0.5}$
 $= 32.19280949$
 $= 32.2 \text{ years (1 dec. pl.)}.$

That is, it will take 32.2 years to reduce to 8 kg.



- (i) Equation of AB is y = 2x + 10, \therefore gradient = 2. Gradient $OC = \frac{8-0}{4-0} = 2$ = gradient AB. $\therefore OC ||AB$.
- ∠ABO = ∠BOC because they are alternate angles between parallel sides AB and OC.
- (iii) Assume that in the congruent triangles *ABO* matches *COB*. With this assumption any of the following three arguments complete the proof.

AO = BC (corresponding sides of congruent Δs)

AB = CO (corresponding sides of congruent Δs)

.: OABC is a parallelogram (both pairs of opposite sides equal).

OR $\angle AOB = \angle CBO$ (corresponding angles of congruent Δs)

OA||CD (alternate angles equal)

:. OABC is a parallelogram (both pairs of opposite sides parallel).

OR AB = CO (corresponding sides of congruent Δs)

.. OABC is a parallelogram (one pair of sides, AB and OC, are both parallel and equal).

There is a logic problem with this answer. The question does not actually say that *ABO* matches *COB*. Since there are no other restrictions on the points *A* and *B*, it is possible that the match could be done differently.

There are 5 other possibilities to consider. Two of them (ABO matches BCO and ABO matches OBC) are impossible, since the triangles would have to be equilateral.

The other three *are* possible. However, they all lead to isosceles triangles, from which one can deduce that a congruence with *ABO* matching *COB* is *also* possible. One can then complete the proof as above.

QUESTION 7

- (a) (i) $$A_1 = $P \times 1.08 3000
 - (ii) $$A_2 = (P \times 1.08 $3000) 1.08 3000$ = $P \times 1.08^2 - $3000 \times 1.08 - 3000$ = $P \times 1.08^2 - $3000 (1 + 1.08)$.
 - (iii) $$A_6 = $P \times 1.08^6 $3000(1 + 1.08 + \dots + 1.08^5) = 0.$ $\therefore $P \times 1.08^6 = $3000(\frac{1.08^6 - 1}{1.08 - 1})$ $$P = \frac{$3000(1.08^6 - 1)}{1.08^6 \times 0.08}$ = \$13.868.64.
 - **OR** Investment = $P(1.08^6)$.

Withdrawal

$$= 3000 + 3000 \times 108 + 3000 \times 108^{2} + \dots + 3000 \times 108^{5}$$

$$= 3000(1+1.08+1.08^2+\cdots+1.08^5).$$

That is, GP where a = 1, r = 1.08, n = 6,

$$S_6 = \frac{3000(1.08^6 - 1)}{0.08}$$
$$= 22\,007.79.$$

Amount invested will be enough when investment = withdrawals.

That is,
$$P = \frac{2207.79}{1.08^6}$$

$$\$P = \$13 868.64.$$

(b) $x = 2\sin t - t$, $t \ge 0$.

(i)
$$v = \frac{dx}{dt} = 2\cos t - 1.$$

- (ii) At t = 0, v = 2 1 = 1,
 - :. the particle is moving in a positive direction.

(iii)
$$2\cos t - 1 = 0$$
$$\cos t = \frac{1}{2}$$
$$t = \frac{\pi}{3} \text{ seconds.}$$

(iv)
$$a = \frac{dv}{dt} = -2\sin t$$
.

Acceleration is negative when $0 < t < \pi$.



Total distance =
$$\left(\sqrt{3} - \frac{\pi}{3}\right) + \left(\pi + \sqrt{3} - \frac{\pi}{3}\right)$$

= $2\sqrt{3} + \frac{\pi}{3}$.

QUESTION 8

(a) (i)
$$y = e^{x^2}$$

 $x^2 = \log_2 y$

Rotating about the y axis,

$$V = \pi \int_{1}^{7} x^{2} dy$$
$$= \pi \int_{1}^{7} \log_{e} y dy.$$

(ii)	у	1	4	7
	log _e y	0	1.386	1.946

(iii)
$$V = \pi \int_{1}^{7} \log_{e} y \, dy$$

 $\Rightarrow \pi \times \frac{3}{2} [(0 + 1386) + (1386 + 1946)].$
 $\therefore \text{ Volume } \Rightarrow 22.2 \text{ cubic units.}$

(b) (i)
$$P(5 \text{ then } 3) = P(5) \times P(3)$$

= $\frac{2}{5} \times \frac{2}{4}$
= $\frac{1}{5}$.

(ii)
$$P(\text{sum at least 8})$$

= $P(\text{sum 8}) + P(\text{sum 10})$
= $P(5, 3 \text{ or } 3, 5) + P(5, 5)$
= $\frac{1}{5} + \frac{1}{5} + \frac{2}{5} \times \frac{1}{4}$
= $\frac{1}{2}$.

(iii) The probability that the second card is a 3 is the same as the probability that the first card is a 3, that is, $\frac{2}{5}$.

OR
$$P(x, 3) = P(0, 3) + P(3, 3) + P(5, 3)$$

= $\frac{1}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{2}{4}$
= $\frac{2}{5}$.

(c) Stationary points occur when f'(x) = 0, that is, at x = 1 and at x = 5.
 To find the minimum, use the first derivative or second derivative test.

First derivative test:

	x < 1	x = 1	1 < x < 5	x = 5	x > 5
f'(x)	> 0	0	< 0	0	> 0
f(x)	/		\		/

There is a local minimum at x = 5.

Second derivative test:

At x = 1, f'(x) is decreasing so the curve is concave down (that is, f''(x) < 0). This is a local maximum.

At x = 5, f'(x) is increasing so the curve is concave up (that is, f''(x) > 0). This is a local minimum.

QUESTION 9

(a)
$$A = \int_0^{\frac{\pi}{4}} \sec^2 x \, dx - A\Delta$$
$$= \left[\tan x \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \times \left(\frac{\pi}{4} \right)^2$$
$$= \tan \frac{\pi}{4} - \tan 0 - \frac{\pi^2}{32}$$
$$= 1 - 0 - \frac{\pi^2}{32}$$
$$= 1 - \frac{\pi^2}{32}$$
$$= 0.692 \text{ (3 sig. figs)}.$$

(b) (i) 1.
$$\angle STR = \angle PTQ$$
 (vert. opp.)
2. $\angle SRT = \angle TPQ$ (alt. $\angle s$, $SR||PQ$)
 $\therefore \Delta SRT |||\Delta QPT$ (equal $\angle s$)
 $\therefore \frac{SR}{PQ} = \frac{VT}{UT}$ (ratios of corresp. lengths in similar Δs . N.B. VT and UT are corresp. altitudes).

(ii)
$$\frac{SR}{4} = \frac{3-y}{y}$$
$$SR = \frac{12-4y}{y}$$
$$\therefore SR = \frac{12}{y} - 4.$$

(iii)
$$A(\Delta PTQ + \Delta RTS)$$

$$= \frac{1}{2} [SR \times (3 - y) + 4y]$$

$$= \frac{1}{2} [\left(\frac{12}{y} - 4\right)(3 - y) + 4y]$$

$$= \left(\frac{6}{y} - 2\right)(3 - y) + 2y$$

$$= \frac{18}{y} - 6 - 6 + 2y + 2y$$

$$= 4y - 12 + \frac{18}{y}.$$

(iv) Minimum value of A occurs when
$$d^{A}$$

$$\frac{dA}{dy} = 0 \text{ and } \frac{d^2A}{dy^2} > 0.$$

$$A = 4y - 12 + 18y^{-1}$$

$$\therefore \frac{dA}{dy} = 4 - 18y^{-2}$$

$$\frac{d^2A}{dv^2} = 36y^{-3}.$$

$$\frac{dA}{dy}=0, \quad \therefore \quad 4-\frac{18}{y^2}=0$$

$$4y^2 - 18 = 0$$

$$y^2 - \frac{18}{18}$$

$$y=\pm\frac{3\sqrt{2}}{2}.$$

But
$$y > 0$$
, so $y = \frac{3\sqrt{2}}{2}$.

When
$$y = \frac{3\sqrt{2}}{2}$$
, $\frac{d^2A}{dy^2} = \frac{36}{\left(\frac{3\sqrt{2}}{2}\right)^3} > 0$.

.. The value of y that minimises A is $\frac{3\sqrt{2}}{2}$ metres.

QUESTION 10

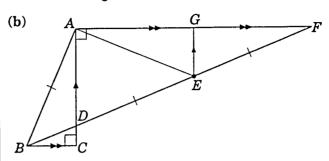
(a) (i) LHS:
$$\sin x = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
.

RHS:
$$\frac{1}{2}\tan x = \frac{1}{2}\tan\frac{\pi}{3}$$
$$= \frac{1}{2}\sqrt{3}$$
$$= \frac{\sqrt{3}}{2} = \text{LHS}.$$

That is, $\sin x = \frac{1}{2} \tan x$ when $x = \frac{\pi}{3}$.

(ii) $y = \frac{\pi}{3}$ $-\frac{\pi}{2}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π

- (iii) Solutions are x = 0, $\frac{\pi}{3}$, $-\frac{\pi}{3}$.
- (iv) $\sin x \le \frac{1}{2} \tan x$ for $\frac{\pi}{3} < x \le \frac{\pi}{2}$ or $-\frac{\pi}{3} \le x \le 0$.



- (i) $\angle BCD = \angle DAF$ (both 90°) $\angle BDC = \angle ADF$ (vertically opposite \angle s)
 - $\therefore \Delta DBC ||\Delta DFA \text{ (equal } \angle s)$
 - $\therefore \angle DBC = \angle DFA$ (corresponding $\angle s$ in similar Δs).
- OR $\angle BCD = \angle DAF$ (both 90°)
 - \therefore AF||BC (alternate \angle s equal)
 - $\therefore \angle DBC = \angle DFA$ (alternate $\angle s$, AF || BC).
- (ii) $\angle AGE = 90^{\circ}$ (coint. with $\angle GAD$, AD || GE) $\angle EGF = 90^{\circ}$ (\angle on a straight line)
 - $\therefore \angle AGE = \angle EGF \quad \text{(both 90°)}.$

Since E is the midpoint of DF, G must be be the midpoint of AF (by equal intercept theorem, given that GE||AD).

AG = GF

$$GE = GE$$
 (common)

$$\therefore \Delta AGE \equiv \Delta FGE \quad \text{(SAS)}.$$

(iii) Let
$$\angle DBC = \alpha$$

$$\angle AFE = \alpha$$
 (from (i))

$$\angle EAF = \angle AFE$$
 (corresp. $\angle s$,
 $\triangle AGE \equiv \triangle FGE$)

$$= \alpha$$
.

$$\angle AED = 2\alpha \qquad \text{(ext. } \angle \text{ of } \triangle \text{ equals}$$

sum of int. opp. \angle s).

Now AE = EF (corresp. sides,

$$\Delta AGE \equiv \Delta FGE$$

$$\therefore AB = AE \quad \text{(both equal to } EF\text{)}$$

∴
$$\angle ABD = \angle AED$$
 (base \angle s of isos. \triangle)
= 2α
= $2\angle DBC$.

END OF 2/3 UNIT (COMMON) MATHEMATICS SOLUTIONS