1997 HIGHER SCHOOL CERTIFICATE EXAMINATION PAPER

2/3 UNIT (COMMON) MATHEMATICS

Marks

2

1

1

QUESTION 1

(a) Find the value of

$$\frac{1}{7+5\times3}$$

correct to three significant figures.

- (b) Simplify (2-3x)-(5-4x).
- (c) Write down the exact value of 135° in radians.

(d)

In the diagram, PQ is an arc of a circle with centre O. The radius OP = 3 cm and the angle POQ is $\frac{5\pi}{6}$ radians.

Find the length of the arc PQ.

- (e) Using the table of standard integrals find $\int \sec 3x \tan 3x \ dx$.
- (f) Forty-five balls, numbered 1 to 45, are placed in a barrel, and one ball is drawn at random. What is the probability that the number on the ball drawn is even?
- (g) By rationalising the denominator, express $\frac{8}{3-\sqrt{5}}$ in the form $a+b\sqrt{5}$.

QUESTION 2

(a)

Marks

1

The diagram shows a sketch of the curve $y = 6x^2 - x^3$.

The curve cuts the x axis at L, and has a local maximum at M and a point of inflection at N.

- (i) Find the coordinates of L.
- (ii) Find the coordinates of M.
- (iii) Find the coordinates of N.
- (b) The graph of y = f(x) passes through the point (1, 4) and f'(x) = 2x + 7. Find f(x).
- (c) Find a primitive of $\frac{2x}{x^2+1}$.
- (d) Consider the parabola with equation $x^2 = 4(y-1).$
 - (i) Find the coordinates of the vertex of the parabola.
 - (ii) Find the coordinates of the focus of the parabola.

QUESTION 3

- (a) Differentiate the following functions:
 - (i) $(x^2+5)^3$ (ii) $\frac{\cos x}{x}$ (iii) $x^2 \ln x$.

- (b) Let A and B be the points (0, 1) and (2, 3) respectively.
 - (i) Find the coordinates of the midpoint of AB.
 - (ii) Find the slope of the line AB.
 - (iii) Find the equation of the perpendicular bisector of AB.
 - (iv) The point P lies on the line y = 2x 9 and is equidistant from A and B. Find the coordinates of P.

QUESTION 4

(a) The table shows the values of a function f(x) for five values of x.

х	1	1.5	2	2.5	3
f(x)	5	1	-2	3	7

Use Simpson's rule with these five values to estimate $\int_{1}^{3} f(x) dx$.

- (b) (i) Sketch the graph of $y = x^2 6$, and label all intercepts with the axes.
 - (ii) On the same set of axes, carefully sketch the graph of y = |x|.
 - (iii) Find the x coordinates of the two points where the graphs intersect.
 - (iv) Hence solve the inequality $x^2 6 \le |x|$.

The diagram shows the graphs of the functions $y = \cos x$ and $y = \sin 2x$ between x = 0 and $x = \frac{\pi}{2}$.

The two graphs intersect at $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$.

Calculate the area of the shaded region.

QUESTION 5

3

- (a) Evaluate $\int_0^{\ln 7} e^{-x} dx.$
- (b) C R R R R R

In the diagram, ABCD is a square. The points P, Q, and R lie on AB, BC, and CD respectively, such that AP = BQ = CR.

- (i) Prove that triangles *PBQ* and *QCR* are congruent.
- (ii) Prove that $\angle PQR$ is a right angle.
- (c) The rate of inflation measures the rate of change in prices. Between January 1996 and December 1996, prices were rising but the rate of inflation was falling. Draw a graph of prices as a function of time that fits this description.
- (d) A ball is dropped from a height of 2 metres 4 onto a hard floor and bounces. After each bounce, the maximum height reached by the ball is 75% of the previous maximum height. Thus, after it first hits the floor, it reaches a height of 1.5 metres before falling again, and after the second bounce, it reaches a height of 1.125 metres before falling again.
 - (i) What is the maximum height reached after the third bounce?
 - (ii) What kind of sequence is formed by the successive maximum heights?
 - (iii) What is the total distance travelled by the ball from the time it was first dropped until it eventually comes to rest on the floor?

A wire of length 5 metres is to be bent to form the hypotenuse and base of a right-angled triangle PQR, as shown in the diagram. Let the length of the base QR be x metres.

- (i) What is the length of the hypotenuse PQ in terms of x?
- (ii) Show that the area of the triangle PQR is $\frac{1}{2}x\sqrt{25-10x}$ square metres.
- (iii) What is the maximum possible area of the triangle?

A logo is made of 20 squares with a common corner, as shown in the diagram. The odd-numbered 'stripes' between successive squares are shaded in the diagram. The shaded stripes are painted in gold paint, which costs \$9 per square centimetre.

The side length of the nth square is (2n+4) cm. The nth stripe lies between the nth square and the (n+1)th square.

- (i) Show that the area of the *n*th stripe is $(8n+20) \text{ cm}^2$.
- (ii) Hence find the areas of the first and last stripes.
- (iii) Hence find the total cost of the gold paint for the logo.

QUESTION 7

(a) By expressing $\sec \theta$ and $\tan \theta$ in terms of $\sin \theta$ and $\cos \theta$, show that

$$\sec^2\theta - \tan^2\theta = 1.$$

The diagram shows part of the graph of the function $y = \tan 2x$.

The shaded region is bounded by the curve, the x axis, and the line $x = \frac{\pi}{6}$. The region is rotated about the x axis to form a solid.

(i) Show that the volume of the solid is given by $V = \pi \int_0^{\frac{\pi}{6}} (\sec^2 2x - 1) dx.$

You may use the result of part (a).

- (ii) Find the exact volume of the solid.
- (c) A ball is dropped into a long vertical tube 5 filled with honey. The rate at which the ball decelerates is proportional to its velocity.

Thus
$$\frac{dv}{dt} = -kv,$$

where v is the velocity in centimetres per second, t is the time in seconds, and k is a constant.

When the ball first enters the honey, at t = 0, v = 100. When t = 0.25, v = 85.

- (i) Show that $v = Ce^{-kt}$ satisfies the equation $\frac{dv}{dt} = -kv$.
- (ii) Find the value of the constant C.
- (iii) Find the value of the constant k.
- (iv) Find the velocity when t = 2.

QUESTION 8

In the isosceles triangle ABC, $\angle ABC = \angle ACB = \alpha$.

The points D and E lie on BC and AC, so that AD = AE, as shown in the diagram. Let $\angle BAD = \beta$.

8

- (i) Explain why $\angle ADC = \alpha + \beta$.
- (ii) Find $\angle DAC$ in terms of α and β .
- (iii) Hence, or otherwise, find $\angle EDC$ in terms of β .
- (b) A particle is moving along the x axis. Its position at time t is given by $x = t + \sin t$
 - (i) At what times during the period $0 < t < 3\pi$ is the particle stationary?

- (ii) At what times during the period $0 < t < 3\pi$ is the acceleration equal to 0?
- (iii) Carefully sketch the graph of $x = t + \sin t$ for $0 < t < 3\pi$.

Clearly label any stationary points and any points of inflection.

QUESTION 9

- (a) A bag contains two red balls, one black ball, and one white ball. Andrew selects one ball from the bag and keeps it hidden. He then selects a second ball, also keeping it hidden.
 - (i) Draw a tree diagram to show all the possible outcomes.
 - (ii) Find the probability that both the selected balls are red.
 - (iii) Find the probability that at least one of the selected balls is red.
 - (iv) Andrew drops one of the selected balls and we can see that it is red. What is the probability that the ball that is still hidden is also red?

A pen moves along the x axis, ruling a line. The diagram shows the graph of the velocity of the tip of the pen as a function of time. The velocity, in centimetres per second, is given by the equation

$$v = 4t^3 - 24t^2 + 20t.$$

where t is the time in seconds. When t = 0, the tip of the pen is at x = 3. That is, the tip is initially 3 centimetres to the right of the origin.

- (i) Find an expression for x, the position of the tip of the pen, as a function of time.
- (ii) What feature will the graph of x as a function of t have at t = 1?
- (iii) The pen uses 0.05 milligrams of ink per centimetre travelled. How much ink is used between t = 0 and t = 2?

QUESTION 10

(a) Graph the solution of $4x \le 15 \le -9x$ on a number line.

In the diagram, Q is the point (-1, 0), R is the point (1, 0), and P is another point on the circle with centre O and radius 1. Let $\angle POR = \alpha$ and $\angle PQR = \beta$, and let $\tan \beta = m$.

- (i) Explain why $\triangle OPQ$ is isosceles, and hence deduce that $\alpha = 2\beta$.
- (ii) Find the equation of the line PQ.
- (iii) Show that the x coordinates of P and Q are solutions of the equation

$$(1+m^2)x^2+2m^2x+m^2-1=0.$$

- (iv) Using this equation, find the coordinates of P in terms of m
- (v) Hence deduce that

$$\tan 2\beta = \frac{2\tan\beta}{1-\tan^2\beta}.$$

1997 HIGHER SCHOOL CERTIFICATE SOLUTIONS

2/3 UNIT (COMMON) MATHEMATICS

QUESTION 1

(a)
$$\frac{1}{7+5\times3} = 0.0\dot{4}\dot{5}$$

= 0.0455 (3 sig. figs)

(b)
$$(2-3x)-(5-4x) = 2-3x-5+4x$$

= $x-3$.

(c)
$$180^{\circ} = \pi^{c}$$

 $1^{\circ} = \frac{\pi}{180}^{c}$
 $\therefore 135^{\circ} = 135 \times \frac{\pi}{180}^{c}$
 $= \frac{3\pi^{c}}{4}$.

(d)
$$PQ = r\theta$$
$$= 3 \times \frac{5\pi}{6}$$
$$= \frac{5\pi}{2} \text{ cm.}$$

(e)
$$\int \sec 3x \tan 3x \ dx = \frac{1}{3} \sec 3x + C.$$

(f) There are 22 even number balls.

$$\therefore P(\text{even}) = \frac{22}{45}$$

(g)
$$\frac{8}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{24+8\sqrt{5}}{9-5}$$

= $6+2\sqrt{5}$.

QUESTION 2

(a) (i) At L,
$$y = 0$$

 $\therefore 6x^2 - x^3 = 0$
 $x^2(6-x) = 0$
 $\therefore x = 0 \text{ or } 6.$

From the diagram the x coordinate at L is 6, $\therefore L = (6, 0)$.

(ii) At
$$M$$
, $\frac{dy}{dx} = 0$ as M is a stationary point.

$$\frac{dy}{dx} = 12x - 3x^2$$

$$= 3x(4-x)$$

$$= 0 \text{ when } x = 0 \text{ or } 4.$$

From the diagram the x coordinate at M is 4, $\therefore M = (4, 32)$.

(iii) N is a point of inflection.
$$\therefore \frac{d^2y}{dx^2} = 0$$
 and there is a change in concavity.

$$\frac{d^2y}{dx^2} = 12 - 6x = 0 \quad \text{when } x = 2.$$

$$x \quad 2 - \varepsilon \quad 2 \quad 2 + \varepsilon$$

Testing:
$$\begin{vmatrix} x & 2-\varepsilon & 2 & 2+\varepsilon \\ y'' & + & 0 & - \end{vmatrix}$$

 $\therefore N = (2, 16).$

(b)
$$f'(x) = 2x+7$$

 $f(x) = x^2+7x+C$
 $f(1) = 1+7+C = 4$

$$C = -4$$

$$\therefore f(x) = x^2 + 7x - 4.$$

(c)
$$\int \frac{2x}{x^2+1} dx = \ln(x^2+1) + C$$
.

(d) We match
$$x^2 = 4(y-1)$$
 with the form
$$(x-h)^2 = 4 \times a \times (y-k),$$
giving $(x-0)^2 = 4 \times 1 \times (y-1)$.

- (i) The vertex is at (h, k) = (0, 1).
- (ii) Focal length = 1 unit (: a = 1).

From the diagram, the focus is at (0, 2).

QUESTION 3

(a) (i)
$$\frac{d}{dx}(x^2+5)^3 = 3 \times (x^2+5)^2 \times 2x$$
$$= 6x(x^2+5)^2.$$

(ii)
$$\frac{d}{dx} \left(\frac{\cos x}{x} \right) = \frac{x \times (-\sin x) - \cos x \times 1}{x^2}$$
$$= \frac{-x \sin x - \cos x}{x^2}.$$

(iii)
$$\frac{d}{dx}(x^2 \ln x) = 2x \ln x + x^2 \times \frac{1}{x}$$
$$= 2x \ln x + x$$
$$= x(2 \ln x + 1).$$

(b) (i) Midpoint of
$$AB = \left(\frac{0+2}{2}, \frac{1+3}{2}\right) = (1,2).$$

(ii) Slope of
$$AB = \frac{3-1}{2-0} = \frac{2}{2} = 1$$
.

(iii) Use
$$y-y_1 = m(x-x_1)$$
, with $(x_1, y_1) = (1, 2)$, and $m = -1$.

$$y-2 = -1 \times (x-1)$$

$$y = -x+1+2$$

i.e.
$$y = -x + 3$$

Alternative method:

Points on the perpendicular bisectors are equidistant from A and B. So if P(x, y) is on the perpendicular bisector, then

$$PA^{2} = PB^{2}.$$
i.e. $(x-0)^{2} + (y-1)^{2} = (x-2)^{2} + (y-3)^{2}$

$$x^{2} + y^{2} - 2y + 1$$

$$= x^{2} - 4x + 4 + y^{2} - 6y + 9$$

$$4y = -4x + 12$$

$$y = -x + 3.$$

(iv) Points equidistant from A and B lie on the perpendicular bisector, so the coordinates of P are the simultaneous solutions of

$$y = -x + 3 \qquad \qquad \mathbf{0}$$

$$y = 2x - 9, \qquad \qquad \mathbf{2}$$

and y = 2x - 9. — ② Equating ① and ② to eliminate y:

$$\therefore 2x-9=-x+3$$

$$\therefore 3x = 12$$

$$\therefore$$
 $x=4$.

In ①,
$$y = -4 + 3$$

= -1

$$\therefore P = (4, -1).$$

QUESTION 4

$$\int_{1}^{3} f(x) dx \approx \frac{2-1}{6} [5+(-2)+4\times 1] + \frac{3-2}{6} (-2+7+4\times 3)$$
$$= \frac{1}{6} \times 7 + \frac{1}{6} \times 17$$
$$= \frac{24}{6}$$
$$= 4.$$

(b) (i) and (ii)

(iii) Solve
$$x^2 - 6 = x$$
 for $x > 0$.
 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$
 $\therefore x = 3 \text{ or } -2$.

Reject x = -2 (outside domain).

The x coordinates of the two points where the graphs intersect are 3 and -3.

(N.B. Both graphs are even functions.)

(iv) We want the x values for which the parabola is 'on' or below the straight lines, that is $-3 \le x \le 3$.

(c) Area =
$$\int_0^{\frac{\pi}{6}} \sin 2x \ dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos x \ dx$$

= $\left[-\frac{\cos 2x}{2} \right]_0^{\frac{\pi}{6}} + \left[\sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$
= $\frac{1}{2} \left(-\cos \frac{\pi}{3} + 1 \right) + \left(\sin \frac{\pi}{2} - \sin \frac{\pi}{6} \right)$
= $\frac{1}{2} \left(-\frac{1}{2} + 1 \right) + \left(1 - \frac{1}{2} \right)$
= $\frac{1}{4} + \frac{1}{2}$
= $\frac{3}{4}$.

QUESTION 5

(a)
$$\int_{0}^{\ln 7} e^{-x} dx = \left[-e^{-x} \right]_{0}^{\ln 7}$$
$$= \left(-e^{-\ln 7} + e^{0} \right)$$
$$= -e^{\ln 7^{-1}} + 1$$
$$= -7^{-1} + 1$$
$$= -\frac{1}{7} + 1$$
$$= \frac{6}{7}.$$

(i)
$$BA = BC$$
 (ABCD is a square)
 $PA = BQ$ (given)
 $\therefore BA - PA = BC - BQ$
i.e. $BP = QC$.

So in triangles PBQ and QCR, we have BP = QC (from above) BQ = CR (given) $\angle PBQ = \angle QCR$ (both 90°, since ABCD is a square) $\Delta PBQ \equiv \Delta QCR$ (SAS).

(ii)
$$\angle BQP + \angle BPQ = 90^{\circ}$$
 ($\angle PBQ = 90^{\circ}$, angle sum of Δ)
 $\angle BPQ = \angle CQR$ (corresponding $\angle S$ in congruent ΔS)
 $\therefore \angle BQP + \angle CQR = 90^{\circ}$ $\Big\{ \angle CQR, \angle PQR \Big\}$

$$\therefore \angle BQP + \angle CQR = 90^{\circ}$$

$$\therefore \angle PQR = 180^{\circ} - 90^{\circ}$$

$$= 90^{\circ}.$$

$$\angle EQR, \angle PQR, PQR, \angle PQR, PQR, \angle PQR,$$

N.B. The curve is increasing and concave down (gradient is decreasing).

- (d) (i) Height = 75% of 1·125 metres = 0.84375 metres.
 - (ii) This is a geometric sequence, with common ratio 0.75.

(iii) The total distance travelled is 2 m for the first drop, plus twice the new height for every bounce (since the ball goes up and down), that is 2+2(1.5+1.125+...).

If we leave out the first drop, we can add up all the heights (limiting sum in brackets above) using

$$S_{\infty} = \frac{a}{1-r},$$
with $a = 1.5$ and $r = 0.75$.
$$S_{\infty} = \frac{1.5}{1-0.75}.$$

Total distance travelled = $2 + 2 \times \left(\frac{1.5}{1 - 0.75}\right)$ = 14 m.

QUESTION 6

(a) (i)
$$PQ + x = 5$$

 $\therefore PQ = (5 - x) \text{ m}.$

(ii)
$$PR^{2} = (5-x)^{2} - x^{2}$$
$$= 25 - 10x + x^{2} - x^{2}$$
$$= 25 - 10x.$$
$$\therefore PR = \sqrt{25 - 10x} \text{ m}$$

Area:
$$A = \frac{1}{2} \times b \times h$$
$$= \frac{1}{2} \times x \times \sqrt{25 - 10x}$$
$$= \frac{1}{2} x \sqrt{25 - 10x} \text{ m}^2.$$

(iii) Differentiate to find maximum.

$$A' = \frac{1}{2}\sqrt{25 - 10x} + \frac{1}{2}x \cdot \frac{1}{2\sqrt{25 - 10x}} \cdot (-10)$$

$$= \frac{1}{2}\sqrt{25 - 10x} - \frac{1}{2} \cdot \frac{5x}{\sqrt{25 - 10x}}$$

$$= \frac{25 - 10x - 5x}{2\sqrt{25 - 10x}}$$

$$= \frac{25 - 15x}{2\sqrt{25 - 10x}}.$$

A'=0 when 25-15x=0, $x=\frac{5}{3}$. If $x<\frac{5}{3}$, then A'>0, and if $x>\frac{5}{3}$, then A'<0, so this is a local maximum. Since A is continuous on its domain 0 < x < 2.5, and since this is the only stationary point, this is also an absolute maximum.

$$A_{\text{max}} = \frac{1}{2} \times \frac{5}{3} \times \sqrt{25 - \frac{50}{3}}$$
$$= \frac{5}{6} \times \sqrt{\frac{25}{3}}$$
$$= \frac{25}{6\sqrt{3}} = \frac{25\sqrt{3}}{18} \text{ m}^2.$$

- (b) (i) Area of *n*th stripe = area of $(n+1)^{th}$ square - area of n^{th} square = $[2(n+1)+4]^2 - (2n+4)^2$ = $(2n+4+2)^2 - (2n+4)^2$ = $(2n+4+2+2n+4) \times (2n+6-2n-4)$ $(\because a^2-b^2=(a+b)(a-b))$ = $(4n+10) \times 2$ = $(8n+20) \text{ cm}^2$.
 - (ii) Area of 1st stripe = $(8 \times 1 + 20)$ cm² = 28 cm². Area of last stripe $(n = 19) = 8 \times 19 + 20$ = 172 cm²
 - (iii) There are 10 shaded stripes in arithmetic progression, so:

Area of shaded stripes
=
$$1 \text{st} + 3 \text{ rd} + 5 \text{ th} + \dots + 19 \text{ th}$$

= $28 + 44 + 60 + \dots + 172$
= $\frac{n}{2}(a + \ell)$
= $\frac{10}{2}(28 + 172)$
= 5×200
= 1000 cm^2 .

Cost of gold paint = $$9 \times 1000$ = \$9000.

QUESTION 7

:.

(a)
$$\sec \theta = \frac{1}{\cos \theta}$$
 and $\tan \theta = \frac{\sin \theta}{\cos \theta}$

$$\therefore \qquad \sec^2 \theta - \tan^2 \theta = \frac{1}{\cos^2 \theta} - \frac{\sin^2 \theta}{\cos^2 \theta}$$

$$= \frac{1 - \sin^2 \theta}{\cos^2 \theta}$$

$$= \frac{\cos^2 \theta}{\cos^2 \theta}$$

$$= 1.$$

OR
$$\cos^{2}\theta + \sin^{2}\theta = 1$$

$$\therefore \qquad 1 - \sin^{2}\theta = \cos^{2}\theta$$

$$\therefore \qquad \frac{1 - \sin^{2}\theta}{\cos^{2}\theta} = 1$$

$$\therefore \qquad \frac{1}{\cos^{2}\theta} - \frac{\sin^{2}\theta}{\cos^{2}\theta} = 1$$

 $\sec^2\theta - \tan^2\theta = 1.$

(b) (i)
$$V = \int_0^{\frac{\pi}{6}} \pi y^2 dx$$

 $= \pi \int_0^{\frac{\pi}{6}} \tan^2 2x dx$
 $= \pi \int_0^{\frac{\pi}{6}} (\sec^2 2x - 1) dx$
 $(\tan^2 \theta = \sec^2 \theta - 1 \text{ from (a)}).$

(ii)
$$V = \pi \left[\frac{1}{2} \tan 2x - x \right]_0^{\frac{\pi}{6}}$$

 $= \pi \left(\frac{1}{2} \tan \frac{\pi}{3} - \frac{\pi}{6} \right) - \pi (0 - 0)$
 $= \pi \left(\frac{\sqrt{3}}{2} - \frac{\pi}{6} \right) \text{ units}^3.$

(c) (i)
$$v = Ce^{-kt}$$

$$\frac{dv}{dt} = C \times (-k) e^{-kt}$$

$$= -k \times Ce^{-kt}$$

$$= -kv.$$

(ii) Using
$$v = 100$$
 when $t = 0$,

$$100 = Ce^{0}$$

$$\therefore C = 100$$

(iii)
$$v = 100 e^{-kt}$$

Using $v = 85$ when $t = 0.25$
 $85 = 100 e^{-0.25k}$
 $0.85 = e^{-0.25k}$
 $0.25k = \ln(0.85)$
 $k = -4\ln(0.85)$ (≈ 0.650).

(iv)
$$v = 100 e^{-0.65 t}$$

= $100 e^{-1.3}$ when $t = 2$
= 27.25 m/s.

OR $v = 100 e^{-(-4 \ln 0.85)t}$ $= 100 e^{8 \ln 0.85}$ when t = 2 $= 100 e^{\ln 0.85^8}$ $= 100 \times 0.85^8$ = 27.25 m/s.

QUESTION 8

(a) (i) $\angle ADC$ is the exterior angle of $\triangle BAD$. $\therefore \angle ADC = \angle DBA + \angle DAB$ (exterior \angle $= \alpha + \beta$. equals sum of int. opp. $\angle s$.) OR

∠BDA =
$$180^{\circ} - (\alpha + \beta)$$
 (∠ sum of ΔBDA).
∴ ∠ADC = $180^{\circ} - \angle BDA$ (BDC is a straight line.)
= $180^{\circ} - [180 - (\alpha + \beta)]$
= $\alpha + \beta$.

(ii)
$$\angle DAC = 180^{\circ} - (\alpha + \beta) - \alpha \ (\angle \text{ sum of } \triangle ADC)$$

= $180^{\circ} - 2\alpha - \beta$
= $180^{\circ} - (2\alpha + \beta)$.

(iii)
$$\angle ADE = \frac{180^{\circ} - \angle DAE}{2}$$
 (\angle sum of $\triangle ADE$, base \angle s of isosceles \triangle are equal.)
$$= \frac{2\alpha + \beta}{2}$$

$$= \alpha + \frac{\beta}{2}.$$

$$\angle EDC = \angle ADC - \angle ADE$$

$$= \alpha + \beta - \left(\alpha + \frac{\beta}{2}\right)$$

$$= \frac{\beta}{\alpha}.$$

(b) (i)
$$x = t + \sin t, \quad 0 < t < 3\pi$$
$$\frac{dx}{dt} = 1 + \cos t.$$

The particle is stationary when $\frac{dx}{dt} = 0$.

$$\therefore \cos t = -1$$

$$\therefore t = \pi$$

(N.B. Also at $t = 3\pi$, but this is not in the domain.)

(ii)
$$\frac{d^2x}{dt^2} = -\sin t.$$

Acceleration zero means $\frac{d^2x}{dt^2} = 0$.

$$\therefore$$
 $\sin t = 0$

$$\therefore \qquad t = \pi \text{ or } 2\pi.$$

(N.B. Also at 0 and 3π , but again not in the domain.)

(iii) At $t = \pi$ we have a stationary point and a point of inflection.

$$x=\pi+\sin\pi$$

$$=\pi$$

$$(\pi,\pi)$$
.

At $t = 2\pi$ we have a point of inflection.

$$x = 2\pi + \sin 2\pi$$

$$=2\pi$$

$$(2\pi, 2\pi).$$

N.B. This is not a stationary point. It

has a slope of
$$\frac{dx}{dt} = 1 + \cos 2\pi$$

= 1+1
= 2.

(ii) P(both red) =
$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$
.
OR
P(both red) = $\frac{1}{12} + \frac{1}{12} = \frac{1}{6}$.

(iii)
$$P(\text{at least 1 red}) = \frac{10}{12} = \frac{5}{6}$$
.
OR
$$P(\text{no red}) = P(BW) + P(WB)$$

$$= \frac{1}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{1}{3}$$

$$= \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
.

- (iv) $P(2R \text{ given } 1R) = \frac{2}{10} = \frac{1}{5}$.
- (b) (i) $\frac{dx}{dt} = 4t^3 24t^2 + 20t.$ $\therefore \quad x = t^4 8t^3 + 10t^2 + C.$ At t = 0, x = 3, $\therefore C = 3$. $x = t^4 8t^3 + 10t^2 + 3$
 - (ii) At t = 1, v = 0 and changes sign from positive to negative:

So at t = 1, the x = f(t) graph has a maximum stationary point.

(iii) At t = 1, x = 1 - 8 + 10 + 3= 6. At t = 2, x = 16 - 64 + 40 + 3= -5.

Distance travelled (from t = 0 to 1) = 6-3=3.

Distance travelled (from t = 1 to 2) = |-5-6| = 11.

.. Total dist. travelled = 14 cm. Ink used = $0.05 \times 14 = 0.7$ milligrams.

OR

Distance travelled

$$= \int_{0}^{1} v \, dt + \int_{1}^{2} |v| \, dt$$

$$= \left[t^{4} - 8t^{3} + 10t^{2} \right]_{0}^{1} + \left| \left[t^{4} - 8t^{3} + 10t^{2} \right]_{1}^{2} \right|$$

$$= (3 - 0) + \left| (-8 - 3) \right|$$

$$= 3 + 11$$

$$= 14 \text{ cm.}$$

QUESTION 10

(a) $4x \le 15 \le -9x$. i.e. $4x \le 15$ and $-9x \ge 15$.

$$x \le \frac{15}{4} = 3\frac{3}{4}$$
 and $x \le -\frac{15}{9} = -1\frac{2}{3}$.

Since both conditions must be true, this simplifies to $x \le -1\frac{2}{3}$.

- (b) (i) OP = OQ (both radii equal to 1)
 - : OPQ is isosceles
 - $\therefore \angle OPQ = \beta \quad \text{(base } \angle \text{s of isosceles } \Delta$ are equal)
 - $\therefore \alpha = \angle OQP + \angle OPQ \text{ (exterior } \angle \text{ equals sum}$ $= \beta + \beta \qquad \text{of interior opposite } \angle s)$ $= 2\beta.$

(ii) PQ has slope $m = \tan \beta$ and goes through Q(-1, 0).

$$y - 0 = m[x - (-1)]$$

$$y = m(x + 1)$$

$$y = mx + m.$$

(iii) x coordinates of P and Q are the simultaneous solutions of

$$y = mx + m
x^{2} + y^{2} = 1$$
∴
$$x^{2} + [m(x+1)]^{2} = 1
\text{(by substitution)}$$
∴
$$x^{2} + m^{2}(x^{2} + 2x + 1) = 1$$
∴
$$x^{2} + m^{2}x^{2} + 2m^{2}x + m^{2} - 1 = 0$$
∴
$$(1 + m^{2})x^{2} + 2m^{2}x + m^{2} - 1 = 0.$$

(iv) Equation in (iii) is a quadratic equation. x coordinates of $P(x_P)$ and Q(-1) must multiply to give $\frac{c}{a}$, where $c = m^2 - 1$ and $a = 1 + m^2$

$$\therefore \quad -1 \times x_P = \frac{m^2 - 1}{1 + m^2}$$

$$\therefore \quad x_P = \frac{1 - m^2}{1 + m^2}$$

$$y_{p} = mx_{p} + m$$

$$= m \left(\frac{1 - m^{2}}{1 + m^{2}} + 1 \right)$$

$$= m \left(\frac{1 - m^{2} + 1 + m^{2}}{1 + m^{2}} \right)$$

$$= \frac{2m}{1 + m^{2}}.$$

$$\therefore P = \left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right).$$

OR

$$x = \frac{-2m^2 \pm \sqrt{4m^4 - 4(m^2 + 1)(m^2 - 1)}}{2(m^2 + 1)}$$

$$= \frac{-2m^2 \pm \sqrt{4m^4 - (4m^4 - 4)}}{2(m^2 + 1)}$$

$$= \frac{-2m^2 \pm 2}{2(m^2 + 1)}$$

$$= \frac{-m^2 \pm 1}{m^2 + 1}$$

$$= \frac{-(m^2 - 1)}{m^2 + 1} \text{ or } \frac{-(m^2 + 1)}{m^2 + 1}$$

$$= \frac{-(m^2 - 1)}{m^2 + 1} \text{ or } -1.$$

Reject
$$-1$$
 as it is the x coordinate of Q .

$$P = \left[\frac{1 - m^2}{1 + m^2}, \ m \left(\frac{1 - m^2}{1 + m^2} \right) + m \right]$$

$$= \left[\frac{1 - m^2}{1 + m^2}, \ \frac{m - m^3 + m + m^3}{1 + m^2} \right]$$

$$= \left[\frac{1 - m^2}{1 + m^2}, \ \frac{2m}{1 + m^2} \right].$$

(v)
$$\tan 2\beta = \tan \alpha$$
 (from (i))

$$= \frac{y_P}{x_P}$$

$$= \frac{2m}{1+m^2} + \frac{1-m^2}{1+m^2}$$

$$= \frac{2m}{1-m^2}$$

$$= \frac{2\tan \beta}{1-\tan^2 \beta}, \text{ since } m = \tan \beta.$$

END OF 2/3 UNIT (COMMON) MATHEMATICS SOLUTIONS