

2008

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Total marks – 84 Attempt Questions 1–7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.

- (a) The polynomial x^3 is divided by x + 3. Calculate the remainder. 2
- (b) Differentiate $\cos^{-1}(3x)$ with respect to x.
- (c) Evaluate $\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx$.
- (d) Find an expression for the coefficient of x^8y^4 in the expansion of $(2x+3y)^{12}$.
- (e) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos\theta \sin^2\theta d\theta$. 2
- (f) Let $f(x) = \log_e [(x-3)(5-x)]$. 2 What is the domain of f(x)?

Marks

3

Question 2 (12 marks) Use a SEPARATE writing booklet.

- (a) Use the substitution $u = \log_e x$ to evaluate $\int_e^{e^2} \frac{1}{x(\log_e x)^2} dx$.
- (b) A particle moves on the x-axis with velocity ν . The particle is initially at rest at x = 1. Its acceleration is given by $\ddot{x} = x + 4$.

Using the fact that $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$, find the speed of the particle at x = 2.

(c) The polynomial p(x) is given by $p(x) = ax^3 + 16x^2 + cx - 120$, where a and c are constants.

The three zeros of p(x) are -2, 3 and α .

Find the value of α .

(d) The function $f(x) = \tan x - \log_e x$ has a zero near x = 4.

Use one application of Newton's method to obtain another approximation to this zero. Give your answer correct to two decimal places.

in an oven preheated to 190°C.

2

1

(a) (i) Sketch the graph of y = |2x - 1|.

1

3

3

(ii) Hence, or otherwise, solve $|2x-1| \le |x-3|$.

Its tem

Its temperature, $T^{\circ}C$, after t hours in the oven satisfies the equation

A turkey is taken from the refrigerator. Its temperature is 5°C when it is placed

$$\frac{dT}{dt} = -k(T - 190).$$

- (i) Show that $T = 190 185e^{-kt}$ satisfies both this equation and the initial condition.
- (ii) The turkey is placed into the oven at 9 am. At 10 am the turkey reaches a temperature of 29°C. The turkey will be cooked when it reaches a temperature of 80°C.

At what time (to the nearest minute) will it be cooked?

- (b) Barbara and John and six other people go through a doorway one at a time.
 - (i) In how many ways can the eight people go through the doorway if John goes through the doorway after Barbara with no-one in between?
 - (ii) Find the number of ways in which the eight people can go through the doorway if John goes through the doorway after Barbara.

Question 4 continues on page 7

(b) Use mathematical induction to prove that, for integers $n \ge 1$,

 $1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n(n+2) = \frac{n}{6}(n+1)(2n+7).$

(c)

A race car is travelling on the x-axis from P to Q at a constant velocity, v. A spectator is at A which is directly opposite O, and $OA = \ell$ metres. When the car is at C, its displacement from O is x metres and $\angle OAC = \theta$, with $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

(i) Show that $\frac{d\theta}{dt} = \frac{v\ell}{\ell^2 + x^2}$.

(ii) Let m be the maximum value of $\frac{d\theta}{dt}$.

Find the value of m in terms of v and ℓ .

(iii) There are two values of θ for which $\frac{d\theta}{dt} = \frac{m}{4}$.

Find these two values of θ .

3

(c)

The points $P(2ap, ap^2)$, $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The tangents to the parabola at P and Q intersect at T. The chord QO produced meets PT at K, and $\angle PKQ$ is a right angle.

Find the gradient of QO, and hence show that pq = -2. 2

The chord PO produced meets QT at L. Show that $\angle PLQ$ is a right angle. (ii) 1

(iii) Let M be the midpoint of the chord PQ. By considering the quadrilateral 2 PQLK, or otherwise, show that MK = ML.

End of Question 4

(a) Let $f(x) = x - \frac{1}{2}x^2$ for $x \le 1$. This function has an inverse, $f^{-1}(x)$.

Question 5 (12 marks) Use a SEPARATE writing booklet.

(i) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same set of axes. (Use the same scale on both axes.) 2

(ii) Find an expression for $f^{-1}(x)$. 3

1

A particle is moving in simple harmonic motion in a straight line. Its maximum 3 speed is 2 m s⁻¹ and its maximum acceleration is 6 m s⁻².

Find the amplitude and the period of the motion.

(c)

Two circles C_1 and C_2 intersect at P and Q as shown in the diagram. The tangent TP to C_2 at P meets C_1 at K. The line KQ meets C_2 at M. The line MPmeets C_1 at L.

Copy or trace the diagram into your writing booklet.

Prove that ΔPKL is isosceles.

1

3

3

(a) From a point A due south of a tower, the angle of elevation of the top of the tower T, is 23°. From another point B, on a bearing of 120° from the tower, the angle of elevation of T is 32°. The distance AB is 200 metres.

- Copy or trace the diagram into your writing booklet, adding the given information to your diagram.
- (ii) Hence find the height of the tower.
- (b) It can be shown that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$ for all values of θ . (Do NOT prove this.)

Use this result to solve $\sin 3\theta + \sin 2\theta = \sin \theta$ for $0 \le \theta \le 2\pi$.

- (c) Let p and q be positive integers with $p \le q$.
 - (i) Use the binomial theorem to expand $(1+x)^{p+q}$, and hence write down the term of $\frac{(1+x)^{p+q}}{x^q}$ which is independent of x.
 - (ii) Given that $\frac{(1+x)^{p+q}}{x^q} = (1+x)^p \left(1+\frac{1}{x}\right)^q$, apply the binomial theorem and the result of part (i) to find a simpler expression for

$$1 + \binom{p}{1} \binom{q}{1} + \binom{p}{2} \binom{q}{2} + \dots + \binom{p}{p} \binom{q}{p}.$$

Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

A projectile is fired from O with velocity V at an angle of inclination θ across level ground. The projectile passes through the points L and M, which are both h metres above the ground, at times t_1 and t_2 respectively. The projectile returns to the ground at N.

The equations of motion of the projectile are

$$x = Vt\cos\theta$$
 and $y = Vt\sin\theta - \frac{1}{2}gt^2$. (Do NOT prove this.)

• (a) Show that
$$t_1 + t_2 = \frac{2V}{g} \sin \theta$$
 AND $t_1 t_2 = \frac{2h}{g}$.

2

Question 7 continues on page 11

Marks

Question 7 (continued)

Let $\angle LON = \alpha$ and $\angle LNO = \beta$. It can be shown that

$$\tan \alpha = \frac{h}{Vt_1 \cos \theta}$$
 and $\tan \beta = \frac{h}{Vt_2 \cos \theta}$. (Do NOT prove this.)

(b) Show that $\tan \alpha + \tan \beta = \tan \theta$.

2

(c) Show that $\tan \alpha \tan \beta = \frac{gh}{2V^2 \cos^2 \theta}$.

1

Let ON = r and LM = w.

(d) Show that $r = h(\cot \alpha + \cot \beta)$ and $w = h(\cot \beta - \cot \alpha)$.

2

Let the gradient of the parabola at L be $\tan \phi$.

(e) Show that $\tan \phi = \tan \alpha - \tan \beta$.

3

(f) Show that $\frac{w}{\tan \phi} = \frac{r}{\tan \theta}$.

2

End of paper

2008 Higher School Certificate Solutions Mathematics Extension 1

Question 1

- (a) Let $P(x) = x^3$ By the remainder theorem, remainder = P(-3)= $(-3)^3$ = -27.
- (b) $\frac{d}{dx} \left[\cos^{-1}(3x) \right]$ $= \frac{-1}{\sqrt{1 (3x)^2}} \times 3$ $= \frac{3}{\sqrt{1 9x^2}}.$
- (c) METHOD I

$$\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} dx$$

$$= \left[\sin^{-1} \frac{x}{2} \right]_{-1}^{1}$$

$$= \sin^{-1} \frac{1}{2} - \sin^{-1} \left(-\frac{1}{2} \right)$$

$$= \frac{\pi}{6} - \left(-\frac{\pi}{6} \right)$$

$$= \frac{\pi}{6} - \frac{\pi}{6} - \frac{\pi}{6} = \frac{\pi}{6} - \frac{\pi}{6} = \frac{\pi$$

METHOD 2

 $\frac{1}{\sqrt{4-x^2}} \text{ is an even function}$ $\therefore \int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx$ $= 2 \int_{0}^{1} \frac{1}{\sqrt{4-x^2}} dx$ $= 2 \left[\sin^{-1} \frac{x}{2} \right]_{0}^{1}$ $= 2 \left(\sin^{-1} \frac{1}{2} - \sin^{-1} 0 \right)$ $= 2 \left(\frac{\pi}{6} \right)$ $= \frac{\pi}{3}.$

(d)
$$(2x+3y)^{12} = \sum_{k=0}^{12} {}^{12}C_k (2x)^{12-k} (3y)^k$$

Coefficient of x^8y^4 is when $k=4$.
 \therefore Coefficient $= {}^{12}C_4 (2)^8 (3)^4$.

(e) Let
$$u = \sin \theta$$

$$\frac{du}{d\theta} = \cos \theta$$
When $\theta = 0$, $u = 0$
When $\theta = \frac{\pi}{4}$, $u = \frac{1}{\sqrt{2}}$

$$\therefore \int_0^{\frac{\pi}{4}} \cos \theta \sin^2 \theta = \int_0^{\frac{1}{\sqrt{2}}} u^2 du$$

$$= \left[\frac{u^3}{3}\right]_0^{\frac{1}{\sqrt{2}}}$$

$$= \frac{1}{3} \cdot \left(\frac{1}{\sqrt{2}}\right)^3 - 0$$

$$= \frac{1}{6\sqrt{2}}.$$

(f)
$$f(x) = \log_e [(x-3)(5-x)]$$

Domain: $(x-3)(5-x) > 0$
 $\therefore x-3 > 0$ and $5-x > 0$
 $\therefore 3 < x < 5$.

Question 2

(a) Let
$$u = \log_e x$$

$$\frac{du}{dx} = \frac{1}{x}$$
when $x = e, u = 1$
when $x = e^2, u = 2$

$$\therefore \int_e^{e^2} \frac{1}{x(\log_e x)^2} dx = \int_1^2 \frac{du}{u^2}$$

$$= \int_1^2 u^{-2} du$$

$$= \left[\frac{u^{-1}}{-1}\right]_1^2$$

$$= -\left[\frac{1}{2} - 1\right] = \frac{1}{2}.$$

$$\ddot{x} = x + 4$$
and $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$

$$\therefore \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = x + 4$$

$$\frac{1}{2} v^2 = \int x + 4 \, dx$$

$$= \frac{x^2}{2} + 4x + c$$
When $x = 1, v = 0$

By substitution,

$$0 = \frac{1^2}{2} + 4(1) + c$$

$$\therefore c = -\frac{9}{2}$$

$$\frac{2}{x^2 + 4x - \frac{9}{2}}$$

$$\frac{1}{2}v^2 = \frac{x^2}{2} + 4x - \frac{9}{2}$$

$$v^2 = x^2 + 8x - 9$$

When
$$x = 2$$
,

$$x = 2$$
,
 $v^2 = 2^2 + 8(2) - 9$
 $= 11$
 $v = \pm \sqrt{11}$

Since speed = $|\nu|$, the speed of the particle when x = 2 is $\sqrt{11}$.

(c) METHOD 1

$$p(x) = ax^3 + 16x^2 + cx - 120$$

Zeros of the polynomial are -2, 3 and α .

$$\therefore \alpha + (-2) + 3 = \frac{-b}{a}$$
$$\alpha + 1 = \frac{-16}{a} \quad --- \oplus$$

and
$$\alpha (-2)(3) = \frac{c}{a}$$

$$-6\alpha = \frac{120}{a} \quad --- ②$$

Substituting 3 into 1.

$$\alpha + 1 = \frac{-16}{\left(\frac{-20}{\alpha}\right)}$$

$$\alpha + 1 = -16 \times \left(\frac{\alpha}{-20}\right)$$

$$\alpha+1=\frac{4\alpha}{5}$$

$$5\alpha + 5 = 4\alpha$$

$$\therefore \alpha = -5.$$

METHOD 2

$$p(x) = ax^3 + 16x^2 + cx - 120$$

Zeros of the polynomial are -2.3 and α .

Using the factor theorem,

$$p(-2) = a(-2)^3 + 16(-2)^2 + c(-2) - 120$$

$$4a+c=-28$$
 ——①

$$p(3) = a(3)^3 + 16(3)^2 + c(3) - 120 = 0$$

∴
$$9a+c=-8$$
 ——②

Solving simultaneously $\mathbb{Q}-\mathbb{Q}$,

$$5a = 20$$

$$\therefore a = 4$$

Substituting a = 4 into \mathbb{O} ,

$$4(4)+c=-28$$

$$c = -44$$

$$p(x) = 4x^3 + 16x^2 - 44x - 120$$

Using the product of roots,

$$\alpha(-2)(3) = \frac{-e}{a}$$
$$-6\alpha = -\frac{(-120)}{4}$$

$$-6\alpha = 30$$

$$\therefore \alpha = -5.$$

(d)
$$f(x) = \tan x - \log_e x$$

$$f'(x) = \sec^2 x - \frac{1}{x}$$

Using Newton's method,

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Let
$$x_1 = 4$$

$$x_2 = 4 - \frac{\tan 4 - \log_e 4}{\sec^2 4 - \frac{1}{4}}$$

= 4.1092...

= 4.11 (to 2 decimal places).

Ouestion 3

(a) (i)

(ii) Solve
$$|2x-1| = |x-3|$$

 $2x-1=x-3$ or $2x-1=-(x-3)$
 $x=-2$ $x=\frac{4}{3}$

Sketch y = |x-3| on the same plane.

.: From the graph,

$$|2x-1| \le |x-3|$$
 for $-2 \le x \le 1\frac{1}{3}$.

(b) Let
$$T_n = n(n+2)$$

and $S_n = \frac{n}{6}(n+1)(2n+7)$
When $n=1$
LHS = T_1

=1×3
=3
RHS =
$$S_1$$

= $\frac{1}{5}(1+1)(2\times1+7)$

=3=LHS

 \therefore The statement is true for n = 1. Let k be a value for which the statement is true.

i.e.
$$S_k = \frac{k}{6}(k+1)(2k+7)$$

We need to prove that the statement is then true for n = k + 1,

$$S_{k+1} = \frac{k+1}{6} (k+1+1) (2(k+1)+7)$$
i.e.
$$= \frac{k+1}{6} (k+2) (2k+9)$$

$$\begin{split} S_{k+1} &= S_k + T_{k+1} \\ &= \frac{k}{6} (k+1) (2k+7) + (k+1) (k+3) \\ &= \frac{k+1}{6} \left[k (2k+7) + 6(k+3) \right] \\ &= \frac{k+1}{6} \left[2k^2 + 13k + 18 \right] \\ &= \frac{k+1}{6} (k+2) (2k+9) \end{split}$$

 \therefore The statement is true for n = k + 1 if it is true for n = k.

Hence by the principle of mathematical induction, the statement is true for all integers $n \ge 1$.

(c) (i)
$$\tan \theta = \frac{x}{\ell}$$

$$\therefore \theta = \tan^{-1} \left(\frac{x}{\ell}\right)$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt}$$

$$d\theta = 1$$

$$\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{x}{\ell}\right)^2} \times \frac{1}{\ell}$$

$$= \frac{1}{\ell^2 + x^2} \times \frac{1}{\ell}$$

$$= \frac{\ell}{\ell^2 + x^2}$$

$$\frac{dx}{dt} = \text{velocity } v$$

By substitution,

$$\frac{d\theta}{dt} = \frac{\ell}{\ell^2 + x^2} \times \nu$$
$$= \frac{\nu\ell}{\ell^2 + x^2}.$$

i.e. when
$$x = 0$$
.

$$\therefore m = \frac{v\ell}{\ell^2}$$
$$= \frac{v}{\ell}.$$

(iii)
$$\frac{d\theta}{dt} = \frac{m}{4}$$

$$\therefore \frac{v\ell}{\ell^2 + x^2} = \frac{v}{4\ell} \quad \text{from (i) and (ii)}$$

$$4v\ell^2 = v\ell^2 + vx^2$$

$$3v\ell^2 = vx^2$$

Since $v \neq 0$,

$$x^2 = 3\ell^2$$

Now $x = \ell \tan \theta$ from (i)

$$\therefore \ell^2 \tan^2 \theta = 3\ell^2$$

$$\tan^2\theta = 3 \quad (\ell \neq 0)$$

$$\tan \theta = \pm \sqrt{3}$$

$$\therefore \theta = \pm \frac{\pi}{3}.$$

Question 4

(a) (i)
$$T = 190 - 185e^{-kt}$$

$$\therefore -185e^{-kt} = T - 190 \quad --- \oplus$$
and
$$\frac{dT}{dt} = -k(-185e^{-kt})$$

$$\therefore \frac{dT}{dt} = -k(T - 190)$$
using \oplus , as required

Also, when t = 0

$$T = 190 - 185e^0$$

= 5, as required

$$\therefore T = 190 - 185e^{-kt}$$

satisfies both the equation

$$\frac{dT}{dt} = -k(T - 190)$$
 and the initial condition.

(ii) At 9 am, let t = 0

:. At 10 am, t = 1 and T = 29.

Substituting.

$$29 = 190 - 185e^{-k(1)}$$

$$185e^{-k} = 190 - 29$$

$$e^{-k} = \frac{161}{185}$$

Taking log, of both sides,

$$-k = \log_e \left(\frac{161}{185}\right)$$

$$\therefore k = -\log_e \left(\frac{161}{185}\right)$$
$$= 0.1389...$$

Substituting T = 80 to find the time taken.

$$80 = 190 - 185e^{-kt}$$

$$185e^{-kt} = 190 - 80$$

$$=110$$

$$e^{-kt} = \frac{110}{185}$$

Taking log_e of both sides,

$$-kt = \log_e \left(\frac{110}{185}\right)$$

$$t = \frac{\log_e \left(\frac{110}{185}\right)}{-k}$$

= 3.7414... hours

= 3 h 44 minutes

(to nearest minute)

.. The turkey will be cooked at 12:44 pm.

Regarding John and Barbara as one unit, Number of ways = 7!= 5040.

(ii) METHOD 1

2008 Higher School Certificate

Without restrictions, 8 people can go through the doorway in 8! ways i.e. 40 320 ways.

Now the number of ways John can go through after Barbara = the number of ways Barbara can go through after John.

.. Number of ways John can go through the doorway after Barbara

$$= \frac{1}{2} \times 8!$$

$$= \frac{1}{2} \times 40320$$

$$= 20160.$$

METHOD 2

If Barbara goes through the door first, John can follow her in 7 other positions

If Barbara goes through the door in second position, John can follow her in 6 other positions,

.. Number of ways John can follow Barbara

$$= 7 + 6 + 5 + 4 + 3 + 2 + 1$$

= 28

For each way John can follow Barbara, the number of ways the other people can go through the door = 6!

.. Number of ways in total $= 28 \times 6!$ = 20 160.

(i) Gradient of OO

$$= m_{QO} = \frac{aq^2 - 0}{2aq - 0}$$
$$= \frac{q}{2}$$

To show Pq = -2, we find m_{PT} , the gradient of the tangent at P.

$$x^2 = 4av$$

$$y = \frac{x^2}{4a}$$

$$\therefore \frac{dy}{dx} = \frac{2x}{4a}$$

$$=\frac{x}{2a}$$

At P, x = 2ap

$$\therefore \frac{dy}{dx} = \frac{2ap}{2a}$$

$$= p$$

$$\therefore m_{PT} = p$$

Since $QO \perp PT$,

$$m_{QO} \times m_{PT} = -1$$

$$\therefore \frac{q}{2} \times p = -1$$

pq = -2 as required.

(ii) To show $\angle PLQ = 90^{\circ}$ we must show $OL \perp PL$

$$m_{QL}$$
 = gradient of tangent at Q
= $\frac{x}{2a}$ from (i)

$$= \frac{1}{2a} \text{ If on}$$

$$= \frac{2aq}{2a}$$

$$=q$$

$$\begin{split} m_{PL} &= \text{gradient of } PL = m_{PO} \\ &= \frac{ap^2 - 0}{2ap - 0} \end{split}$$

$$=\frac{p}{2}$$

$$\therefore m_{QL} \times m_{PL} = q \times \frac{p}{2}$$

$$=\frac{pq}{2}$$

$$= \frac{-2}{2} \text{ since } pq = -2$$

from (i)

$$= -1$$

$$\therefore QL \perp PL$$

$$\therefore \angle PLQ = 90^{\circ}.$$

(iii) Since $\angle PLQ = \angle PKQ = 90^{\circ}$, POLK is a cyclic quadrilateral (\(\s \) at the circumference standing on chord PQ are equal).

> PO is a diameter (\angle s in a semicircle are 90°).

Since M is the midpoint of PQ, M is the centre of the circle.

 $\therefore MK = ML$ (radii of a circle).

Ouestion 5

(a)
$$f(x) = x^2 - \frac{1}{2}x^2$$
 for $x \le 1$.

(ii) Interchanging x and y gives

$$x = y - \frac{1}{2}y^2$$

$$\therefore y^2 - 2y = -2x$$

$$y^2 - 2y + 1 = 1 - 2x$$

$$(y-1)^2 = 1-2x$$

$$y = 1 \pm \sqrt{1 - 2x}$$

$$y = 1 \pm \sqrt{1 - 2x}$$

Since
$$y \le 1$$
,

$$y = 1 - \sqrt{1 - 2x}$$

i.e.
$$f^{-1}(x) = 1 - \sqrt{1 - 2x}$$
.

(iii)
$$f^{-1}\left(\frac{3}{8}\right) = 1 - \sqrt{1 - 2\left(\frac{3}{8}\right)}$$
$$= 1 - \sqrt{\frac{1}{4}}$$
$$= \frac{1}{2}.$$

(b) *METHOD 1*

Using
$$v^2 = n^2 \left(A^2 - x^2 \right),$$

when
$$x = 0$$
,

$$v = 2$$

$$\therefore n^2 A^2 = 4 \quad --- \oplus$$

Using
$$\ddot{x} = -n^2 x$$
,

when
$$x = A$$
,

$$|\ddot{x}| = n^2 A$$

$$\therefore n^2 A = 6 \quad --- 2$$

Solving (1) and (2),

$$4 = 6A$$

$$A = \frac{2}{3}$$

$$n = 3$$

∴ Amplitude
$$=\frac{2}{3}$$
 m

Period =
$$\frac{2\pi}{n}$$

= $\frac{2\pi}{3}$ seconds.

METHOD 2

$$x = A \sin nt$$

$$v = \dot{x}$$

$$\nu = x$$

$$= nA\cos nt$$

$$acc. = \ddot{x}$$

$$=-n^2A\sin nt$$

Maximum
$$v = 2$$
 : $nA = 2$ — ①

Maximum acc. =
$$6$$
 $\therefore n^2 A = 6$ — ②

Solving ① and ②,

$$2n = 6$$

$$n=3$$

$$A = \frac{2}{3}$$

∴ Period
$$T = \frac{2\pi}{n}$$

= $\frac{2\pi}{3}$ secon

Amplitude =
$$\frac{2}{3}$$
 m.

 $\angle TPM = \angle LPK$ (vertically opposite ∠s) $\angle TPM = \angle POM$ (\angle in the alternative segment in circle C2

$$\therefore \angle LPK = \angle PQM$$

$$\angle PQM = \angle PLK$$

(exterior \angle to a cyclic quadrilateral in circle C₁ is equal to the opposite interior \angle)

with TP tangent)

 $\therefore \angle LPK = \angle PLK$

 $\therefore \Delta PKL$ is isosceles.

Question 6

(a) (i)

(ii) Let TO = h metres.

In
$$\triangle AOT$$
, $\tan 23^\circ = \frac{h}{AO}$

$$\therefore AO = \frac{h}{\tan 23^{\circ}}$$

In
$$\triangle BOT$$
, $\tan 32^\circ = \frac{h}{BO}$

$$\therefore BO = \frac{h}{\tan 32^{\circ}}$$

From the diagram,

$$\angle AOB = 180^{\circ} - 120^{\circ}$$
$$= 60^{\circ}$$

Using the cosine rule in $\triangle AOB$,

$$AB^2$$

$$=AO^{2}+BO^{2}-2(AO)(BO)\cos 60^{\circ}$$

By substitution,

$$200^{2} = \left(\frac{h}{\tan 23^{\circ}}\right)^{2} + \left(\frac{h}{\tan 32^{\circ}}\right)^{2}$$
$$-2 \times \left(\frac{h}{\tan 23^{\circ}}\right) \times \left(\frac{h}{\tan 32^{\circ}}\right)$$
$$\times \cos 60^{\circ}$$
$$= \frac{h^{2}}{\tan^{2} 23^{\circ}} + \frac{h^{2}}{\tan^{2} 32^{\circ}}$$

$$-\frac{2h^2}{\tan 23^\circ \tan 32^\circ} \times \frac{1}{2}$$

Rearranging,

$$h^{2} \left(\frac{1}{\tan^{2} 23^{\circ}} + \frac{1}{\tan^{2} 32^{\circ}} - \frac{1}{\tan^{2} 23^{\circ} \tan^{2} 32^{\circ}} \right)$$

= 40 000

$$\therefore h^2 = \frac{40\,000}{\left(\frac{1}{\tan^2 23^\circ} + \frac{1}{\tan^2 32^\circ} - \frac{1}{\tan 23^\circ \tan 32^\circ}\right)}$$

$$\therefore h = \sqrt{\frac{40\ 000}{4.3409...}}$$

=95.9924...m

=96 m (to nearest m)

:. Height of the tower is 96 m.

(c) (i) Consider the expansion of $(1+x)^{p+q}$ in ascending powers of x:

$$(1+x)^{p+q} = {p+q \choose 0} x^0 + {p+q \choose 1} x^1$$

$$+ {p+q \choose 2} x^2 + \dots + {p+q \choose r} x^r$$

$$+ \dots + {p+q \choose p+q} x^{p+q}$$

To find the term independent of x in

the expansion of $\frac{(1+x)^{p+q}}{x^q}$

we must look for the term with x^0 .

$$\therefore \text{ Term with } x^0 = \frac{\binom{p+q}{q} x^q}{x^q}$$
$$= \binom{p+q}{q}.$$

(ii)
$$\frac{(1+x)^{p+q}}{x^q} = (1+x)^p \left(1 + \frac{1}{x}\right)^q$$
$$= \left[\binom{p}{0} x^0 + \binom{p}{1} x^1 + \binom{p}{2} x^2 + \dots + \binom{p}{q} x^p \right]$$
$$\times \left[\binom{q}{0} \left(\frac{1}{x}\right)^0 + \binom{q}{1} \left(\frac{1}{x}\right)^1 + \binom{q}{2} \left(\frac{1}{x}\right)^2 + \dots + \binom{q}{q} \left(\frac{1}{x}\right)^q \right]$$

The term independent of x on the RHS is

$$\binom{p}{0}(x^0)\binom{q}{0}\left(\frac{1}{x}\right)^0 + \binom{p}{1}x^1\binom{q}{1}\left(\frac{1}{x}\right)^1 +$$

$$\binom{p}{2}x^2\binom{q}{2}\left(\frac{1}{x}\right)^2 + \dots + \binom{p}{p}x^p\binom{q}{p}\left(\frac{1}{x}\right)^p$$
since $p \le q$

$$= \binom{p}{0} \binom{q}{0} + \binom{p}{1} \binom{q}{1} + \binom{p}{2} \binom{q}{2} + \dots + \binom{p}{p} \binom{q}{p}$$

$$= 1 + \binom{p}{1} \binom{q}{1} + \binom{p}{2} \binom{q}{2} + \dots + \binom{p}{p} \binom{q}{p}$$

$$= \binom{p+q}{q}$$

(which is the term independent of x on the LHS using part (i)).

Question 7

(a) y = h at $t = t_1$ and $t = t_2$ $\therefore h = Vt \sin \theta - \frac{1}{2}gt^2$ $gt^2 - 2Vt \sin \theta + 2h = 0$ This quadratic equation has roots t_1 and

$$\therefore \text{Sum of roots } t_1 + t_2 = \frac{2V \sin \theta}{g}$$

Product of roots $t_1 t_2 = \frac{2h}{g}$.

$$\tan\alpha = \frac{h}{Vt_1\cos\theta}$$

$$\tan \beta = \frac{h}{Vt_2 \cos \theta}$$

$$\tan \alpha + \tan \beta = \frac{h}{V \cos \theta} \left(\frac{1}{t_1} + \frac{1}{t_2} \right)$$

$$= \frac{h}{V \cos \theta} \left(\frac{t_1 + t_2}{t_1 t_2} \right)$$

$$= \frac{h}{V \cos \theta} \left(2V \frac{\sin \theta}{g} \times \frac{g}{2h} \right)$$
from (i)

$$= \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta.$$

(c)
$$\tan \alpha \tan \beta$$

$$= \frac{h}{Vt_1 \cos \theta} \times \frac{h}{Vt_2 \cos \theta}$$

$$= \frac{h^2}{V^2 \cos^2 \theta} \left(\frac{1}{t_1 t_2}\right)$$

$$= \frac{h^2}{V^2 \cos^2 \theta} \left(\frac{g}{2h}\right) \text{ from (i)}$$

$$= \frac{gh}{2V^2 \cos^2 \theta}.$$

(d) In
$$\triangle OLP$$
 $\tan \alpha = \frac{LP}{OP}$
 $\therefore OP = LP \cot \alpha$
In $\triangle NLP$ $\tan \beta = \frac{LP}{NP}$
 $\therefore NP = LP \cot \beta$
 $r = OP + NP$
 $= LP \cot \alpha + LP \cot \beta$
 $= LP(\cot \alpha + \cot \beta)$
 $= h(\cot \alpha + \cot \beta)$
By symmetry in the parabola,
 $OP = QN$
 $\therefore w = r - 2OP$
 $= h(\cot \alpha + \cot \beta) - 2h \cot \alpha$

 $=h(\cot\beta-\cot\alpha).$

(e)
$$\frac{dx}{dt} = V \cos \theta$$

$$\frac{dy}{dt} = V \sin \theta - gt$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= (V \sin \theta - gt) \times \frac{1}{V \cos \theta}$$

$$= \frac{V \sin \theta - gt}{V \cos \theta}$$

$$= \tan \theta - \frac{gt}{V \cos \theta}$$
When $t = t_1$, $\frac{dy}{dx} = \tan \phi$

$$\therefore \tan \phi = \tan \theta - \frac{gt}{V \cos \theta}$$
Now
$$\tan \alpha \tan \beta = \frac{gh}{2V^2 \cos^2 \theta} \text{ from (c)}$$

$$\therefore \tan \beta = \frac{gh}{2V^2 \cos^2 \theta} \times \frac{1}{\tan \alpha}$$

$$= \frac{gh}{2V^2 \cos^2 \theta} \times \frac{Vt_1 \cos \theta}{h}$$

$$= \frac{gt_1}{2V \cos \theta}$$

$$\therefore t_1 = \frac{2V \cos \theta \tan \beta}{g}$$
Substituting t_1 into \mathbb{O} ,
$$\tan \phi = \tan \theta - \frac{g}{V \cos \theta} \times \frac{2V \cos \theta \tan \beta}{g}$$

$$= \tan \theta - 2 \tan \beta$$

$$\tan \theta = \tan \alpha + \tan \beta \text{ from (b)}$$

$$= (\tan \alpha + \tan \beta) - 2 \tan \beta$$

 $\therefore \tan \phi = \tan \alpha - \tan \beta.$

f)
$$r = h(\cot \alpha + \cot \beta) \text{ from (d)}$$

$$w = h(\cot \beta - \cot \alpha) \text{ from (d)}$$

$$\therefore \frac{w}{r} = \frac{\cot \beta - \cot \alpha}{\cot \alpha + \cot \beta}$$

$$= \frac{\frac{1}{\tan \beta} - \frac{1}{\tan \alpha}}{\frac{1}{\tan \beta} + \frac{1}{\tan \beta}}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha \tan \beta}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha \tan \beta}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha + \tan \beta}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha + \tan \beta}$$

Now
$$\tan \alpha - \tan \beta = \tan \phi \quad \text{from (e)}$$

$$\tan \alpha + \tan \beta = \tan \theta \quad \text{from (b)}$$

$$\therefore \frac{w}{r} = \frac{\tan \phi}{\tan \theta}$$

$$\therefore \frac{w}{\tan \phi} = \frac{r}{\tan \theta}.$$

End of Mathematics Extension 1 solutions